

py-PACKMAN Documentation

This package focuses on studying molecular structures and their dynamics using a simple yet informative property known as Protein Packing. Over the last few years, we have worked on several techniques to capture and quantify the protein packing, resulting in a few publications. This package has all the code to repeat and further develop these techniques.

Tutorials

The guides to using the PACKMAN GUI, CLI, and API for different submodules are included in the tutorials.

Documentation

	Index

	Module Index

Web Servers

	Hinge Prediction [https://packman.bb.iastate.edu/]

	hdANM [https://hdanm.bb.iastate.edu/]

	Packing Entropy [https://packing-entropy.bb.iastate.edu/]

	DCI [https://dci.bb.iastate.edu/]

Publications

	PACKMAN-molecule (https://doi.org/10.1093/bioadv/vbac007)

	Hinge Prediction (https://doi.org/10.1016/j.jmb.2019.11.018)

	Structural Compliance (https://doi.org/10.1002/prot.25968)

	hdANM (https://doi.org/10.1016/j.bpj.2021.10.017)

	Packing Entropy (https://doi.org/10.1021/acsomega.2c00999)

	DCI (https://doi.org/10.1093/bioinformatics/btac159)

Project Goal

There are only limited methods available to study the global motions of the protein such as their hinge motions and shear motions. These motions take place over a broad range of time scales, from microseconds to seconds; however, molecular dynamics methods can only model easily the motions occurring on the time scale from picoseconds to microseconds, and in addition, such simulations require that replicas be run. Thus, extracting the meaningful slow motions is difficult. Hence, there is a need to explore other ways to utilize the protein structures to model/ predict the global/large scale motions of the protein. The important motions depend on the protein packing as a multiscale phenomenon that can influence the global or local motions in the proteins. To model the protein packing, an efficient, robust and simple mathematical method is needed. In this study, we have explored alpha shapes (a subset of Delaunay tessellations) for the protein backbone coordinates as a model of protein packing. We demonstrate that the method can predict the protein hinges which are responsible for the global motions of the proteins. The method is named PACKMAN (PACking and Motion ANalyses). From a literature survey for randomly selected protein structures and another 367 protein structure pairs having known open and closed conformations, PACKMAN can predict hinge locations accurately on the proteins for both the open and closed conformations outperforming existing hinge predicting methods that usually require either the open form or both conformations to predict the protein hinges. The successful implementation of the mathematical method to model a multiscale phenomenon such as protein packing to predict the hotspots of the global/large scale motions in proteins shows promise for the further exploration of other types of protein and supramolecular dynamics.

Acknowledgments

The development of the PACKMAN package webservers are supported by NSF [https://www.nsf.gov/] grant DBI 1661391. The authors also thank ResearchIT@Iowa State University [https://researchit.las.iastate.edu/about-research-it-iowa-state-university] for helping with many aspects of computing.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 packman	

 	
 	
 packman.anm	

 	
 	
 packman.anm.anm	

 	
 	
 packman.anm.hd_anm	

 	
 	
 packman.apps	

 	
 	
 packman.apps.calculate_entropy	

 	
 	
 packman.apps.dci	

 	
 	
 packman.apps.hdanm	

 	
 	
 packman.apps.predict_hinge	

 	
 	
 packman.bin	

 	
 	
 packman.bin.GUI	

 	
 	
 packman.bin.PACKMAN	

 	
 	
 packman.constants	

 	
 	
 packman.constants.Constants	

 	
 	
 packman.entropy	

 	
 	
 packman.entropy.entropy	

 	
 	
 packman.geometry	

 	
 	
 packman.geometry.geometry	

 	
 	
 packman.gnm	

 	
 	
 packman.gnm.gnm	

 	
 	
 packman.molecule	

 	
 	
 packman.molecule.annotations	

 	
 	
 packman.molecule.atom	

 	
 	
 packman.molecule.bond	

 	
 	
 packman.molecule.chain	

 	
 	
 packman.molecule.hetmol	

 	
 	
 packman.molecule.model	

 	
 	
 packman.molecule.molecule	

 	
 	
 packman.molecule.protein	

 	
 	
 packman.molecule.residue	

 	
 	
 packman.tests	

 	
 	
 packman.tests.anm	

 	
 	
 packman.tests.anm.test_anm	

 	
 	
 packman.tests.data	

 	
 	
 packman.tests.entropy	

 	
 	
 packman.tests.entropy.test_entropy	

 	
 	
 packman.tests.molecule	

 	
 	
 packman.tests.molecule.test_molecule	

 	
 	
 packman.utilities	

 	
 	
 packman.utilities.utilities	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	AlphaShape() (in module packman.geometry.geometry)

 	
 	ANM (class in packman.anm.anm), [1]

 	Atom (class in packman.molecule.atom), [1]

B

 	
 	Bond (class in packman.molecule.bond)

 	browseFiles() (packman.bin.GUI.hdANM_GUI method)

 	(packman.bin.GUI.HingePrediction method)

 	(packman.bin.GUI.Voronoi_Packing_Entropy_GUI method)

C

 	
 	calcualte_pymol_commands() (packman.apps.dci.DCI method)

 	calculate_bonds() (packman.molecule.model.Model method), [1]

 	calculate_CH_plot() (packman.apps.dci.DCI method)

 	calculate_cluster() (packman.apps.dci.DCI method)

 	calculate_cross_correlation() (packman.anm.hd_anm.hdANM method), [1]

 	calculate_crosscorrelation() (packman.apps.dci.DCI method)

 	(packman.gnm.gnm.GNM method)

 	calculate_decomposition() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	(packman.apps.dci.DCI method)

 	(packman.gnm.gnm.GNM method)

 	calculate_distance() (packman.molecule.atom.Atom method), [1]

 	calculate_entropy() (packman.entropy.entropy.PackingEntropy method), [1]

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	calculate_fluctuations() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	(packman.gnm.gnm.GNM method)

 	
 	calculate_hessian() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	calculate_hessian_pseudoinverse() (packman.anm.hd_anm.hdANM method), [1]

 	calculate_kirchhoff() (packman.gnm.gnm.GNM method)

 	calculate_kirchoff() (packman.apps.dci.DCI method)

 	calculate_movie() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	calculate_RT_eigen_vectors() (packman.anm.hd_anm.hdANM method), [1]

 	calculate_spherepoints() (packman.entropy.entropy.PackingEntropy method), [1]

 	calculate_stiffness_compliance() (packman.anm.anm.ANM method), [1]

 	calculate_surafacepoints() (packman.entropy.entropy.PackingEntropy method), [1]

 	calculate_windows() (packman.apps.dci.DCI method)

 	Chain (class in packman.molecule.chain), [1]

 	change_alphabet() (in module packman.utilities.utilities), [1]

 	check_clashes() (packman.molecule.model.Model method), [1]

 	Circumsphere() (in module packman.geometry.geometry)

D

 	
 	DCI (class in packman.apps.dci)

 	
 	dci_cli() (in module packman.apps.dci)

 	download_structure() (in module packman.molecule.molecule), [1]

E

 	
 	entropy_cli() (in module packman.apps.calculate_entropy), [1]

G

 	
 	get_alpha_value() (packman.molecule.annotations.Hinge method), [1]

 	get_alternatelocationindicator() (packman.molecule.atom.Atom method), [1]

 	get_atom() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_atom_byid() (packman.molecule.model.Model method), [1]

 	get_atoms() (packman.molecule.bond.Bond method)

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_backbone() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_bfactor() (packman.molecule.atom.Atom method), [1]

 	get_bond() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.model.Model method), [1]

 	get_bonds() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	get_calpha() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_centerofgravity() (packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_chain() (packman.molecule.model.Model method), [1]

 	get_chains() (packman.molecule.model.Model method), [1]

 	get_changed_alphabet() (packman.molecule.residue.Residue method), [1]

 	get_charge() (packman.molecule.atom.Atom method), [1]

 	get_cluster_labels() (packman.apps.dci.DCI method)

 	get_communities() (packman.apps.dci.DCI method)

 	get_compliance_map() (packman.anm.anm.ANM method), [1]

 	get_compliance_profile() (packman.anm.anm.ANM method), [1]

 	get_crosscorrelation() (packman.apps.dci.DCI method)

 	(packman.gnm.gnm.GNM method)

 	get_crosscorrelation_matrix() (packman.anm.hd_anm.hdANM method), [1]

 	get_data() (packman.molecule.protein.Protein method), [1]

 	get_domain_id() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_eigenvalues() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	(packman.gnm.gnm.GNM method)

 	get_eigenvectors() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	(packman.gnm.gnm.GNM method)

 	get_element() (packman.molecule.atom.Atom method), [1]

 	get_elements() (packman.molecule.annotations.Hinge method), [1]

 	get_entropy() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_fluctuations() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	(packman.gnm.gnm.GNM method)

 	get_hessian() (packman.anm.anm.ANM method), [1]

 	(packman.anm.hd_anm.hdANM method), [1]

 	get_hessian_block() (packman.anm.hd_anm.hdANM method), [1]

 	get_hessian_pseudoinverse() (packman.anm.hd_anm.hdANM method), [1]

 	
 	get_hetatoms() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	get_hetmol() (packman.molecule.chain.Chain method), [1]

 	get_hetmols() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	get_hinges() (packman.molecule.chain.Chain method), [1]

 	get_id() (packman.molecule.annotations.Hinge method), [1]

 	(packman.molecule.atom.Atom method), [1]

 	(packman.molecule.bond.Bond method)

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.protein.Protein method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_kirchhoff() (packman.gnm.gnm.GNM method)

 	get_labels() (packman.apps.dci.DCI method)

 	get_location() (packman.molecule.atom.Atom method), [1]

 	get_models() (packman.molecule.protein.Protein method), [1]

 	get_n_communities() (packman.apps.dci.DCI method)

 	get_name() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_occupancy() (packman.molecule.atom.Atom method), [1]

 	get_parent() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_property() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.bond.Bond method)

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	get_pseudoinverse() (packman.gnm.gnm.GNM method)

 	get_pvalue() (packman.molecule.annotations.Hinge method), [1]

 	get_range() (packman.apps.dci.DCI method)

 	get_residue() (packman.molecule.chain.Chain method), [1]

 	get_residues() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	get_RT_eigen_vectors() (packman.anm.hd_anm.hdANM method), [1]

 	get_segmentidentifier() (packman.molecule.atom.Atom method), [1]

 	get_sequence() (packman.molecule.chain.Chain method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.protein.Protein method), [1]

 	get_source() (packman.molecule.bond.Bond method)

 	get_stats() (packman.molecule.annotations.Hinge method), [1]

 	get_stiffness_map() (packman.anm.anm.ANM method), [1]

 	get_stiffness_profile() (packman.anm.anm.ANM method), [1]

 	get_surafacepoints() (packman.entropy.entropy.PackingEntropy method), [1]

 	get_tip() (packman.molecule.residue.Residue method), [1]

 	get_torsion() (packman.molecule.bond.Bond method)

 	(packman.molecule.model.Model method), [1]

 	get_total_chain_entropy() (packman.entropy.entropy.PackingEntropy method), [1]

 	get_total_entropy() (packman.entropy.entropy.PackingEntropy method), [1]

 	get_total_packing_fraction() (packman.entropy.entropy.PackingEntropy method), [1]

 	get_type() (packman.molecule.bond.Bond method)

 	get_version() (in module packman.bin.GUI)

 	GNM (class in packman.gnm.gnm)

H

 	
 	hdANM (class in packman.anm.hd_anm), [1]

 	hdanm_cli() (in module packman.apps.hdanm)

 	hdANM_GUI (class in packman.bin.GUI)

 	HetMol (class in packman.molecule.hetmol), [1]

 	hide() (packman.bin.GUI.hdANM_GUI method)

 	(packman.bin.GUI.HingePrediction method)

 	(packman.bin.GUI.HomePage method)

 	(packman.bin.GUI.Voronoi_Packing_Entropy_GUI method)

 	
 	Hinge (class in packman.molecule.annotations), [1]

 	hinge_cli() (in module packman.apps.predict_hinge), [1]

 	HingePrediction (class in packman.bin.GUI)

 	HomePage (class in packman.bin.GUI)

I

 	
 	IO() (in module packman.bin.PACKMAN), [1]

L

 	
 	load_cif() (in module packman.molecule.molecule), [1]

 	load_cli() (in module packman.bin.PACKMAN), [1]

 	load_gui() (in module packman.bin.GUI)

 	
 	load_hinge() (in module packman.utilities.utilities), [1]

 	load_pdb() (in module packman.molecule.molecule), [1]

 	load_structure() (in module packman.molecule.molecule), [1]

M

 	
 	main() (in module packman.bin.PACKMAN), [1]

 	
 	Model (class in packman.molecule.model), [1]

P

 	
 	PackingEntropy (class in packman.entropy.entropy), [1]

 	packman (module), [1]

 	packman.anm (module), [1]

 	packman.anm.anm (module), [1]

 	packman.anm.hd_anm (module), [1]

 	packman.apps (module), [1]

 	packman.apps.calculate_entropy (module), [1]

 	packman.apps.dci (module)

 	packman.apps.hdanm (module)

 	packman.apps.predict_hinge (module), [1]

 	packman.bin (module), [1]

 	packman.bin.GUI (module)

 	packman.bin.PACKMAN (module), [1]

 	packman.constants (module), [1]

 	packman.constants.Constants (module), [1]

 	packman.entropy (module), [1]

 	packman.entropy.entropy (module), [1]

 	packman.geometry (module)

 	packman.geometry.geometry (module)

 	packman.gnm (module)

 	packman.gnm.gnm (module)

 	
 	packman.molecule (module), [1]

 	packman.molecule.annotations (module), [1]

 	packman.molecule.atom (module), [1]

 	packman.molecule.bond (module)

 	packman.molecule.chain (module), [1]

 	packman.molecule.hetmol (module), [1]

 	packman.molecule.model (module), [1]

 	packman.molecule.molecule (module), [1]

 	packman.molecule.protein (module), [1]

 	packman.molecule.residue (module), [1]

 	packman.tests (module)

 	packman.tests.anm (module)

 	packman.tests.anm.test_anm (module)

 	packman.tests.data (module)

 	packman.tests.entropy (module)

 	packman.tests.entropy.test_entropy (module)

 	packman.tests.molecule (module)

 	packman.tests.molecule.test_molecule (module)

 	packman.utilities (module), [1]

 	packman.utilities.utilities (module), [1]

 	predict_hinge() (in module packman.apps.predict_hinge), [1]

 	Protein (class in packman.molecule.protein), [1]

R

 	
 	read() (in module packman.bin.GUI)

 	Residue (class in packman.molecule.residue), [1]

 	RMSD() (in module packman.utilities.utilities), [1]

 	
 	run_Entropy() (packman.bin.GUI.Voronoi_Packing_Entropy_GUI method)

 	run_hdANM() (packman.bin.GUI.hdANM_GUI method)

 	run_PACKMAN() (packman.bin.GUI.HingePrediction method)

S

 	
 	set_alternatelocationindicator() (packman.molecule.atom.Atom method), [1]

 	set_atoms() (packman.molecule.bond.Bond method)

 	set_bfactor() (packman.molecule.atom.Atom method), [1]

 	set_bond() (packman.molecule.atom.Atom method), [1]

 	set_charge() (packman.molecule.atom.Atom method), [1]

 	set_data() (packman.molecule.protein.Protein method), [1]

 	set_domain_id() (packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	set_elment() (packman.molecule.atom.Atom method), [1]

 	set_entropy() (packman.molecule.residue.Residue method), [1]

 	set_hinges() (packman.molecule.chain.Chain method), [1]

 	set_id() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	set_location() (packman.molecule.atom.Atom method), [1]

 	set_name() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	set_occupancy() (packman.molecule.atom.Atom method), [1]

 	set_parent() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	
 	set_property() (packman.molecule.atom.Atom method), [1]

 	(packman.molecule.bond.Bond method)

 	(packman.molecule.chain.Chain method), [1]

 	(packman.molecule.hetmol.HetMol method), [1]

 	(packman.molecule.model.Model method), [1]

 	(packman.molecule.residue.Residue method), [1]

 	set_segmentidentifier() (packman.molecule.atom.Atom method), [1]

 	set_torsion() (packman.molecule.bond.Bond method)

 	(packman.molecule.model.Model method), [1]

 	set_type() (packman.molecule.bond.Bond method)

 	setUp() (packman.tests.anm.test_anm.TestMolecule method)

 	(packman.tests.entropy.test_entropy.TestMolecule method)

 	(packman.tests.molecule.test_molecule.TestMolecule method)

 	show() (packman.bin.GUI.hdANM_GUI method)

 	(packman.bin.GUI.HingePrediction method)

 	(packman.bin.GUI.HomePage method)

 	(packman.bin.GUI.Voronoi_Packing_Entropy_GUI method)

 	show_frame() (packman.bin.GUI.Skeleton method)

 	Skeleton (class in packman.bin.GUI)

 	superimporse() (in module packman.utilities.utilities), [1]

T

 	
 	tearDown() (packman.tests.anm.test_anm.TestMolecule method)

 	(packman.tests.entropy.test_entropy.TestMolecule method)

 	(packman.tests.molecule.test_molecule.TestMolecule method)

 	test_ANM_Compliance() (packman.tests.anm.test_anm.TestMolecule method)

 	test_Atom() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_Bond() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_Chain() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_hdANM() (packman.tests.anm.test_anm.TestMolecule method)

 	test_load_cif() (packman.tests.molecule.test_molecule.TestMolecule method)

 	
 	test_load_pdb() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_Model() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_PackingEntropy() (packman.tests.entropy.test_entropy.TestMolecule method)

 	test_Protein() (packman.tests.molecule.test_molecule.TestMolecule method)

 	test_Residue() (packman.tests.molecule.test_molecule.TestMolecule method)

 	TestMolecule (class in packman.tests.anm.test_anm)

 	(class in packman.tests.entropy.test_entropy)

 	(class in packman.tests.molecule.test_molecule)

 	top_menu (class in packman.bin.GUI)

V

 	
 	Voronoi_Packing_Entropy_GUI (class in packman.bin.GUI)

W

 	
 	write_cif() (packman.molecule.protein.Protein method), [1]

 	write_pdb() (packman.molecule.protein.Protein method), [1]

 	
 	write_structure() (packman.molecule.protein.Protein method), [1]

 	WriteOBJ() (in module packman.utilities.utilities), [1]

packman

	packman package
	Subpackages
	packman.anm package
	Submodules

	packman.apps package
	Submodules

	packman.bin package
	Submodules

	packman.constants package
	Submodules

	packman.entropy package
	Submodules

	packman.molecule package
	Submodules

	packman.utilities package
	Submodules

packman.anm.anm module

The ‘ANM’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘ANM’ object documentation for details.

	Example::

	from packman.anm import ANM
help(ANM)

Notes

	Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance

	For more details about the parameters for compliance, or to site this, read the following paper: https://doi.org/10.1002/prot.25968

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	Part Credits: Ambuj Kumar (ambuj@iastate.edu)

	
class packman.anm.anm.ANM(atoms, gamma=1.0, dr=15.0, power=0, pf=None)

	Bases: object

This class contains the functions essential to carry out the Anisotropic Network Model and Compliance analysis.

Notes:
* Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance
* For more details about the parameters for compliance, or to site this, read the following paper:

	Parameters

	
	coords ([float]) – Two dimentional array of three dimentional points in the space.

	gamma (float, optional) – Spring Constant Value. Defaults to 1.0.

	dr (float, optional) – Distance Cutoff. Defaults to 15.0.

	power (int, optional) – Power of distance (mainly useful in non-parametric mode). Defaults to 0.

	pf (None, optional) – Parameter free model. (Check the dr and power params) Defaults to None.

	
calculate_decomposition()

	Decompose the Hessian Matrix of the ANM model.

Note

Eigen values and Eigen Vectors are calculated. use ANM().get_eigenvalues() and ANM().get_eigenvectors() to obtain them.

	
calculate_fluctuations(endmode=None)

	Calculate the Fluctuations of the ANM model.

The fluctualtions/ theoretical b-factors are calculated using this method.

Note

	Fluctuations are calculated. use ANM().get_fluctuations() to obtain the fluctuations.

	Endmode needs to be put in the code if and when required.

	
calculate_hessian()

	Build the Hessian Matrix of the ANM model.

This is the most essential step for ANM/ Compliance analysis.

Notes

	Hessian matrix is built; use ANM().get_hessian() to obtain the hessian matrix.

	
calculate_movie(mode_number, scale=1.5, n=20, ftype='cif')

	Get the movie of the obtained LINEAR modes. The first frame is the original structure and the projection progresses in positive (+) direction, returning to original structure and then in negative direction (-) again returning to the original structure.

	Parameters

	
	mode_number (int) – Mode number. (first non-rigid mode is 6th)

	scale (float) – Multiplier; extent to which mode will be extrapolated. Defaults to 1.5

	n (int) – Number of frames in output (should be =>8 and ideally multiple of 4) Defaults to 20

	ftype (string) – Extension of the output file (.cif / .pdb)

Note

	Scale and n parameters should be redesigned.

	direction is the variable which be allow user to explore only positive or only negative direction of the modes.

	Returns

	True if successful; false otherwise.

	
calculate_stiffness_compliance()

	Carry out the Stiffness and Compliance analysis of the ANM model.

Citation:
Scaramozzino, D., Khade, P.M., Jernigan, R.L., Lacidogna, G. and Carpinteri, A.
(2020), Structural Compliance ‐ A New Metric for Protein Flexibility. Proteins. Accepted Author Manuscript.
doi:10.1002/prot.25968

Note

	
	Obtain the following properties by using functions followed by it:

	Stiffness Map : ANM().get_stiffness_map()
Compliance Map : ANM().get_compliance_map()
Stiffness Profile : ANM().get_stiffness_profile()
Compliance Profile: ANM().get_compliance_profile()

	
get_compliance_map()

	Get the Compliance Map obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Compliance Map if successful; None otherwise

	Return type

	numpy.ndarray

	
get_compliance_profile()

	Get the Compliance profile obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Compliance profile if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvalues()

	Get the Eigenvalues obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvalues if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvectors()

	Get the Eigenvectors obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_fluctuations()

	Get the Fluctuations obtained from Eigenvectors and Eigenvalues

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian()

	Get the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() is called before calling this function. (will return None otherwise)

	Returns

	Hessian matrix if successful; None otherwise

	Return type

	numpy.ndarray

	
get_stiffness_map()

	Get the Stiffness Map obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Stiffness Map if successful; None otherwise

	Return type

	numpy.ndarray

	
get_stiffness_profile()

	Get the Stiffness profile obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Stiffness profile if successful; None otherwise

	Return type

	numpy.ndarray

packman.anm.hd_anm module

The ‘hdANM’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘hdANM’ object documentation and the publication for details.

Citation:

Pranav M. Khade, Domenico Scaramozzino, Ambuj Kumar, Giuseppe Lacidogna, Alberto Carpinteri, Robert L. Jernigan, hdANM: a new comprehensive dynamics model for protein hinges, Biophysical Journal, 2021, https://doi.org/10.1016/j.bpj.2021.10.017

About .hng File:
- hdANM requires the information about hinges and domains in the .hng format.
- Each column in the .hng file is tab delimited.
- Each row in the .hng file follows collowing pattern:

Filename_ChainID Domain/HingeId ResidueStartPosition:ResidueEndPosition

Example of .hng file for PDBID 1EXR:

1EXR_A D1 1:70
1EXR_A H1 70:90
1EXR_A D2 90:148

Above format means that there are two domains (D1 and D2) separated by a hinge (H1). D1 stretches from residue 1 to 70; D2 stretches from 90 to 148 and hinge H1 is in the middle.

Example:

from packman.anm import hdANM
help(hdANM)

Notes

	Tutorial: https://py-packman.readthedocs.io/en/latest/tutorials/hdANM.html#tutorials-hdanm

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.anm.hd_anm.hdANM(atoms, hng_file, gamma=1.0, dr=15.0, power=0, pf=None)

	Bases: object

This class contains the functions essential to carry out the Hinge-Domain-Anisotropic Network Model and Compliance analysis.

Notes:
* Tutorial:
* For more details about the parameters for compliance, or to site this, read the following paper:

	Parameters

	
	atoms ([packman.molecule.Atom]) – Two dimentional array of atoms.

	hng_file (string) – .hng filename and path. (Contains the information about hinge and domains on the protein)

	gamma (float, optional) – Spring Constant Value. Defaults to 1.0.

	dr (float, optional) – Distance Cutoff. Defaults to 15.0.

	power (int, optional) – Power of distance (mainly useful in non-parametric mode). Defaults to 0.

	pf (None, optional) – Parameter free model?. Defaults to None.

	Raises

	
	Exception – [description]

	Exception – [description]

	Exception – [description]

	
calculate_RT_eigen_vectors()

	Calculate the reverse transformed vectors from the hdANM eigenvectors.

Reverse transformed means that the hdANM eigenvector of dimension: 6D+3H x 6D+3H (D: Number of domains; H: Number of hinge atoms) are converted to 3N x 6D+3H (N: Number of atoms)

Note

	It was refered as ‘exploded vector’ utill version 1.3.3

	
calculate_cross_correlation(n_modes='all')

	Calculate the cross correlation matrix for the hdANM modes.

Crosscorrelation matrix is generated for all modes by default. Please change the n_modes parameter to restrict modes.

	Parameters

	n_modes (-) – Number of modes that need to be considered to calculate the cross correlation matrix.

	
calculate_decomposition(include_mass=True)

	Decompose the Hessian Matrix of the hdANM model.

	Parameters

	include_mass (bool) – Amino Acid Residue mass/Atomic mass should be (True) or shouldn’t be (False) included for the decomposition. Defaults to True

Note

	Eigen values and Eigen Vectors are calculated. use hdANM().get_eigenvalues() and hdANM().get_eigenvectors() to obtain them.

	Currently only molecular weight is included in case of Amino Acid Residue(coarse grained) mass.

	Mass of the Amino Acid Residues/Atoms can be found in /packman/constants/Constants.py

ie…
from packman.constants import amino_acid_molecular_weight
from packman.constants import atomic_weigh

	
calculate_fluctuations()

	Calculate the Fluctuations of the hd-ANM model.

The fluctualtions/ theoretical b-factors are calculated using this method.

Note

	Fluctuations are calculated. use hdANM().get_fluctuations() to obtain the fluctuations.

	Endmode needs to be put in the code if and when required.

	hdANM().fluctuations stores the output of this function.

	
calculate_hessian(mass_type='unit')

	Build the Hessian Matrix of the hdANM model.

This is the most essential step for hdANM. It picks up blocks from ANM hessian matrix and puts it in the format described in the paper.

	Parameters

	mass_type (unit/atom/residue) – Whether to use unit (1), atomic weights or residue mass for the mass matrix.

Notes

	Possible argument removal for the decomposition function

	use hdANM().domain_hessian, hdANM().domain_mass_matrix and hdANM().domain_info to access output of this function

	Mass of the Amino Acid Residues/Atoms can be found in /packman/constants/Constants.py

ie…
from packman.constants import amino_acid_molecular_weight
from packman.constants import atomic_weigh

	
calculate_hessian_pseudoinverse(n_modes='all')

	Calculate the hessian pseudoinverse for the hd-ANM modes

Pseudoinverse is calculated using this methd. Please note that first 6 rigid modes are eliminated in this calculation.

Note

	Can be called on demand or can be called from get method automatically (Needs thinking)

	
calculate_movie(mode_number, scale=1.5, n=20, extrapolation='curvilinear', ftype='cif', ca_to_aa=False)

	This function generates the dynamic 3D projection of the normal modes obtained using hd-ANM. The 3D projection can be linearly extrapolated or curvilinearly extrapolated depending on the choices. The first frame is the original structure and the projection progresses in positive (+) direction, returning to original structure and then in negative direction (-) again returning to the original structure.

	Parameters

	
	mode_number (int) – Mode number. (first non-rigid mode is 6th)

	scale (float) – Multiplier; extent to which mode will be extrapolated. Defaults to 1.5

	n (int) – Number of frames in output (should be =>8 and ideally multiple of 4) Defaults to 20

	extrapolation (linear/curvilinear) – Extrapolation method Defaults to “curvilinear”

	ftype (string) – Extension of the output file (.cif / .pdb)

	ca_to_aa (boolean) – If only single atom type is used (often C-alpha atom only), enabling extrapolates the C-alpha motion to all the atoms. (Default: False)

Note

	Scale and n parameters should be redesigned.

	direction is the variable which be allow user to explore only positive or only negative direction of the modes.

	Returns

	True if successful; false otherwise.

	
get_RT_eigen_vectors()

	Get the Reverse Transformed vectors from the hdANM eigenvectors.

Reverse transformed means that the hdANM eigenvector of dimension: 6D+3H x 6D+3H (D: Number of domains; H: Number of hinge atoms) are converted to 3N x 6D+3H (N: Number of atoms)

Note

	It was refered as ‘exploded vector’ utill version 1.3.3

	Returns

	Reverse Transformed Vector if successful; None otherwise

	Return type

	numpy.ndarray

	
get_crosscorrelation_matrix(n_modes='all')

	

	
get_eigenvalues()

	Get the Eigenvalues obtained by decomposing the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvalues if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvectors()

	Get the Eigenvectors obtained by decomposing the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() and hdANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_fluctuations()

	Get the Fluctuations obtained from Eigenvectors and Eigenvalues

Notes

	Make sure that the hdANM().calculate_hessian(), hdANM().calculate_decomposition() and hdANM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	Fluctuations if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian()

	Get the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() is called before calling this function. (will return None otherwise)

	Returns

	Hessian matrix if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian_block(Index1, Index2)

	Calculate Hij (Hessian matrix component) using equation . ()

Notes:

	Returns

	Hij if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian_pseudoinverse(n_modes='all')

	Get the Pseudoinverse of the hdANM model.

	Returns

	Pseudoinverse if successul; None otherwise

	Return type

	numpy.ndarray

packman.anm package

The ‘packman.anm’ module is a collection of anm methods and applications built on packman.molecule API.

Notes

	Current apps list: - packman.anm.ANM, packman.anm.RDANM

	Cite the following paper:

Example

	Review the packman.bin.PACKMAN.py file for the app use.

Submodules

	packman.anm.anm module

	packman.anm.hd_anm module

packman.apps.calculate_entropy module

The ‘predict_hinge’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘predict_hinge’ object documentation for details.

Example:

from packman.apps import calculate_entropy
help(calculate_entropy)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.apps.calculate_entropy.entropy_cli(args, mol)

	Command-line Interface for the ‘entropy’ command. Please check the packman.bin.PACKMAN file for more details.

This function is for the CLI and not an integral function for the API.

	Parameters

	
	args (parser.parse_args()) – The arguments that were passed by the user to the PACKMAN-hinge app.

	mol (packman.molecule.Protein) – The ‘Protein’ object for the anaylsis.

packman.apps.predict_hinge module

The ‘predict_hinge’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘predict_hinge’ object documentation for details.

Example:

from packman.apps import predict_hinge
help(predict_hinge)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.apps.predict_hinge.hinge_cli(args, mol)

	Command-line Interface for the ‘hinge’ command. Please check the packman.bin.PACKMAN file for more details.

This function is for the CLI and not an integral function for the API.

	Parameters

	
	args (parser.parse_args()) – The arguments that were passed by the user to the PACKMAN-hinge app.

	mol (packman.molecule.Protein) – The ‘Protein’ object for the anaylsis.

	
packman.apps.predict_hinge.predict_hinge(atoms, outputfile, Alpha=inf, method='alpha_shape', filename='Output.pdb', MinimumHingeLength=5, nclusters=4)

	This function is used to carry out hinge prediction given the parameters.

Notes

	The packman.bin.PACKMAN uses this function

	Ideally, the alpha values should be scanned from 0 to 10 to obtain conclusively repetative hinges (Use ‘’ for this purpose)

	
	Please refer to the following paper for the details on the algorithm and citation:

	Pranav M. Khade, Ambuj Kumar, Robert L. Jernigan, Characterizing and Predicting Protein Hinges for Mechanistic Insight,
Journal of Molecular Biology, Volume 432, Issue 2, 2020, Pages 508-522, ISSN 0022-2836, https://doi.org/10.1016/j.jmb.2019.11.018.
(http://www.sciencedirect.com/science/article/pii/S0022283619306837)

	Tutorial Link: https://py-packman.readthedocs.io/en/latest/tutorials/hinge_predict.html#tutorials-predict-hinge

	The predicted hinges are stored in packman.molecule.Chain object as an packman.molecule.Hinge object.

	Parameters

	
	atoms ([packman.molecule.Atom]) – PACKMAN uses backbone atoms of the protein. However, any number and type of atoms can be used (Alpha value range will change)

	outputfile (file) – Output File.

	Alpha (float, optional) – Please refer to the paper for this parameter. Defaults to float(‘Inf’).

	method (str, optional) – Please refer to the paper for this parameter. Defaults to ‘alpha_shape’.

	filename (str, optional) – Please refer to the paper for this parameter. Defaults to ‘Output.pdb’.

	MinimumHingeLength (int, optional) – Please refer to the paper for this parameter. Defaults to 5.

	nclusters (int, optional) – Please refer to the paper for this parameter. Defaults to 4.

	Returns

	The Alpha Shape (Subset of Delaunay Tesselations)

	Return type

	alpha_shape

packman.apps package

The ‘packman.apps’ module is a collection of applications built on packman.molecule API.

Notes

	Current apps list: - predict_hinge : A program to predict the hinge on the molecule given the atoms and relevent parameters

	Example::

	
	Review the packman.bin.PACKMAN.py file for the app use.

Submodules

	packman.apps.calculate_entropy module

	packman.apps.predict_hinge module

packman.bin.PACKMAN module

The PACKMAN Command-line Interface (CLI)

	How to use::

	python -m packman gui #(For GUI)
python -m packman #(For CLI)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.bin.PACKMAN.IO()

	User interface for the user to provide the parameters

	Returns

	Various arguments in various formats

	Return type

	Namespace

	
packman.bin.PACKMAN.load_cli()

	Main Function for PACKMAN.

Kernel of the PACKMAN interface.

	
packman.bin.PACKMAN.main()

	Gatewayto CLI and GUI

packman.bin package

The ‘packman.bin’ is a collection of binaries built on packman.molecule API.

Notes

	Current binary list: - PACKMAN.py : A program to predict the hinge on the molecule given the atoms and relevent parameters

Example

packman -h

OR

python3 -m packman -h

Submodules

	packman.bin.PACKMAN module

packman.constants.Constants module

packman.constants package

Submodules

	packman.constants.Constants module

packman.entropy.entropy module

The Entropy method(s) host file.

This is file information, not the class information. This information is only for the API developers.
Please read the corrosponding object documentation for details.

Example:

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.entropy.entropy.PackingEntropy(atoms, chains=None, probe_size=1.4, onspherepoints=30)

	Bases: object

This class contains all the methods required to obtain a protein complex’s entropy.
Given a group of atoms in the :mod:’packman.molecule.Atom’ objects, the entropy for the each amino acid will be returned.
The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.
:param atoms: The group of atoms user wisher to calculate Packing Entropy with.
:type atoms: [packman.molecule.Atom]
:param chains: Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).
:type chains: [str]/str
:param probe_size: Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)
:type probe_size: float
:param onspherepoints: Number of points to be generated around each point for the surface (Read the Publication for more details)
:type onspherepoints: int

	
calculate_entropy()

	Calculate the Packing Entropy with the current setup.

	
calculate_spherepoints(atom)

	Given a single point, this function generates point cloud around the given points.
:param atom: Atom object around which the sphere of point cloud to be generated.
:type atom: [packman.molecule.Atom]

	
calculate_surafacepoints()

	Calculate the surface points with the current setup.

	
get_surafacepoints()

	Get the surface points around the given set of atoms in the protein.
:returns: Array of 3D points around the given set of atoms in the protein.
:rtype: [[float]]

	
get_total_chain_entropy(chain)

	The sum of Packing Entropies for the Residues in the provided atoms and chain.

Please note that the entropy for the chain you are selecting might not exist if you have not calculated it properly. Please make sure to run calculate_entropy() function properly.
:param chain: chain ID of for the chain you wish to get the entropy.
:type chain: str

	
get_total_entropy()

	The sum of Packing Entropies for the Residues in the provided atoms.
:returns: The sum of Residue Entropies (float)

	
get_total_packing_fraction()

	The sum of Packing Fraction for the Residues in the provided atoms.

	Returns

	The sum of the Residue Packing Fraction (float)

packman.entropy package

The ‘packman.entropy’ module is a collection of entropy methods and applications built on packman.molecule API.

Notes

	Current apps list: - packman.PackingEntropy

	Cite the following paper:

Submodules

	packman.entropy.entropy module

packman.molecule.annotations module

The various annotation objects host file.

This is file information, not the class information. This information is only for the API developers.
Please read the corrosponding object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Hinge
help(Hinge)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.annotations.Hinge(hid, alpha_value, elements, stats, p)

	Bases: object

This class contains the information about the ‘Hinge’ object (packman.molecule.Hinge).

This class contains all the information available about the Hinge. The Hinge class is the not in the hierarchy of the ‘molecule’ API classes.
However, it resides in the packman.molecule.Chain object because there are unique hinges per chain.
the order of hierarchy of Chain being being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

	Parameters

	
	hid (int) – Unique Hinge ID

	alpha_value (float) – The hinge prediction algorithm parameter (Alpha Value) of the Hinge.

	elements (packman.molecule.Residue) – The elements defining the current hinge (Currently residue objects)

	stats ([float]) – Everything about the statistics (mean/median/mode of B-factors)

	p (float) – p-value obtained from the permutation test (Please read the paper for more details)

	
get_alpha_value()

	Get the hinge prediction algorithm parameter (Alpha Value) of the ‘Hinge’.

	Returns

	float if successful, None otherwise

	
get_elements()

	Get the elements (Currently residue objects) of the ‘Hinge’

	Returns

	list of elements (Currently residue objects) if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Hinge’

	Returns

	int if successful, None otherwise.

	
get_pvalue()

	Get the statistics of the ‘Hinge’

	Returns

	p-value obtained from the permutation test (Please read the paper for more details)

	Return type

	p-value (float)

	
get_stats()

	Get the statistics of the ‘Hinge’

	Returns

	Statistics of the Hinge such as mean/median/mode of B-factors if successful, None otherwise.

packman.molecule.atom module

The ‘Atom’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Atom’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Atom
help(Atom)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.atom.Atom(id, AtomName, Coordinates, Occupancy, bfactor, Element, Charge, parent)

	Bases: object

This class contains the information about the ‘Atom’ object (packman.molecule.Atom).

This class contains all the information available about the Atom. The Atom class is the lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Most essential class of all as it stores the actual data of the atoms.

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Atom ID from the PDB file as it is. Each Atom in a PDB file Model/Frame has unique ID. (essential)

	AtomName (str) – Atom Name from the PDB file as it is.

	Coordinates (numpy.array) – The 3*1 array of coordinates/location of the atoms. (essential)

	Occupancy (float) – The value of the occupancy.

	bfactor (float) – The B-factor/Temperature Factor/ Debye Waller Factor of the atom. (For NMR structures, it is RMSF accross the frames)

	Element (str) – Element information of the given ‘Atom’ object. (Element from the Periodic Table)

	Charge (float) – Charnge of the given ‘Atom’ object.

	parent (packman.molecule.Residue) – The Residue Object (parent) this atom belongs to.

	AlternateLocationIndicator (bool) – If the alternate location available for the atom (To be removed in future)

	
calculate_distance(another_atom)

	Calculate the Distance between the given ‘Atom’ and another ‘Atom’

	Parameters

	another_atom (packman.molecule.atom.Atom) – The ‘Atom’ User wishes to calculate distance from.

	Returns

	float if successful, None otherwise.

	
get_alternatelocationindicator()

	Know if the given ‘Atom’ has Alternate Location Information

Note

This feature might be removed in the future.

	Returns

	True if successful, False otherwise.

	
get_bfactor()

	Get the B-factor/Temperature Factor/ Debye Waller Factor of the given ‘Atom’

	Returns

	float if successful, None otherwise.

	
get_bond(atom2)

	Get the specific bond with the specific atom.

	Parameters

	atom2 (packman.molecule.Atom/ int) – ‘Atom’ object or the atom id.

	Returns

	Bond (packman.molecule.Bond) if successful, None if bond does not exist.

	
get_bonds()

	Get the bonds for the given ‘Atom’

	Returns

	list of packman.molecule.Bond if successful; [] otherwise.

	
get_charge()

	Get the Charge of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_domain_id()

	Get the Domain Identifier of the given ‘Atom’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_element()

	Get the Element of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Atom’

	Returns

	int if successful, None otherwise.

	
get_location()

	Get the Coordinates/Location of the given ‘Atom’

	Returns

	numpy.array if successful, None otherwise.

	
get_name()

	Get the Name of the ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_occupancy()

	Get the Occupancy of the given ‘Atom’

	Returns

	float if successful, None otherwise.

	
get_parent()

	Get the ‘Residue’ the given ‘Atom’ belongs to.

	Returns

	packman.molecule.Residue if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Atom’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_segmentidentifier()

	Get the Segment Identifier of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
set_alternatelocationindicator(new_alternatelocationindicator)

	Set the Alternate Location Indicator of the given ‘Atom’

	Parameters

	new_alternatelocationindicator – The Alternate Location Indicator User wishes to assign to the given ‘Atom’

	
set_bfactor(new_bfactor)

	Set the B-factor/Temperature Factor/ Debye Waller Factor of the given ‘Atom’

	Parameters

	new_bfactor (float) – The B-factor/Temperature Factor/ Debye Waller Factor User wishes to assign to the given ‘Atom’

	
set_bond(new_bond)

	Set the atom to the given ‘Atom’

	Parameters

	new_bond (packman.molecule.Bond) – Add new bond to the given ‘Atom’

Note

	Yet to add the functionality to delete the specific bonds.

	
set_charge(new_charge)

	Set the Charge of the given ‘Atom’

	Parameters

	new_charge (str) – The Charge User wishes to assign to the given ‘Atom’

	
set_elment(new_element)

	Set the Element of the given ‘Atom’

	Parameters

	new_element (str) – The Element User wishes to assign to the given ‘Atom’

	
set_id(new_id)

	Set the ID of the given ‘Atom’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Atom’

	
set_location(new_location)

	Set the Coordinates/Location of the given ‘Atom’

	Parameters

	new_location (numpy.array) – The Coordinates/Location User wishes to assign to the given ‘Atom’

	
set_name(new_name)

	Set the Name of the given ‘Atom’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘Atom’

	
set_occupancy(new_occupancy)

	Set the Occupancy of the given ‘Atom’

	Parameters

	new_occupancy – The Occupancy User wishes to assign to the given ‘Atom’

	
set_parent(new_parent)

	Set the Parent ‘Residue’ of the given ‘Atom’

	Parameters

	new_parent (packman.molecule.residue.Residue) – The parent ‘Residue’ User wishes to assign to the given ‘Atom’

	
set_property(property_name, value)

	Set the Property of the given ‘Atom’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
set_segmentidentifier(new_segmentidentifier)

	Set the Segment Identifier of the given ‘Atom’

	Parameters

	new_segmentidentifier (str) – The Segment Identifier User wishes to assign to the given ‘Atom’

packman.molecule.chain module

The ‘Chain’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Chain’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Chain
help(Chain)

Note

	Iterating over chain only fetches the residues not the hetero atoms

	The object fetches the atoms and residues which are not in order as they appear in the PDB. Find a way to fix this

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.chain.Chain(id)

	Bases: object

This class contains the information about the ‘Chain’ object (packman.molecule.Chain).

This class contains all the information available about the Chain and stores the corresponding ‘Residue’ and ‘Hetmol’ objects in itself. The Chain class is the third lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Add get_atoms()

	Parameters

	id (str) – Chain ID from the PDB file as it is. Each Chain in a PDB file Model/Frame has unique ID. (essential)

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
get_atom(idx)

	Get the atom of the given ID.

	Note: - This function is different from packman.molecule.chain.get_atoms() and also packman.molecule.residue.get_atom()

	
	If the PDB file is constructed manually/ has multiple atoms of the same ID, the first instance of the atom with that id is returned. Please avoid saving two atoms with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get atom by the id

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘atom’ objects of the residues of the ‘Chain’

	Returns

	generator of ‘atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Chain’ as a list of ‘Atom’ object

Note

	Backbone Atoms: CA, O, N, C

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_bonds()

	Get the Bonds in the given ‘Chain’

Please check out calculate_bonds() for more information on the bond calculations.

	
get_calpha()

	Get the C-Alpha atoms of the ‘Chain’ as an ‘Atom’ object.

	Returns

	generator of packman.molecule.Atom objects if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Chain’.

Please note that if the Entropy is calculated using specific atoms, this option might not give results for the amino acids that are not included because of the specific selection. Use the get_total_chain_entropy() function. Please see the documentation for more details.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_hetatoms()

	Get the generator of corresponding ‘atom’ objects of the hetmols of the ‘Chain’

	Returns

	generator of ‘atom’ objects if successful, None otherwise.

	
get_hetmol(idx)

	Get the hetmol of the given ID.

	Note: - This function is different from packman.molecule.chain.get_hetmols()

	
	If the PDB file is constructed manually/ has multiple hetmol of the same ID, the first instance of the hetmol with that id is returned. Please avoid saving two hetmol with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get hetmol by the id

	Returns

	HetMol of the given ID if successful; None otherwise.

	Return type

	residue (packman.molecule.HetMol)

	
get_hetmols()

	Get the generator of corresponding ‘HetMol’ objects of the ‘Chain’

	Returns

	generator of ‘HetAtom’ objects if successful, None otherwise.

	
get_hinges()

	Get the hinges in the chain as a dictionary of ‘Hinge’ objects.

	Returns

	packman.molecule.annotations.Hinge if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Residue’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the ‘Model’ the given ‘Chain’ belongs to.

	Returns

	packman.molecule.Model if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_residue(idx)

	Get the residue of the given ID.

	Note: - This function is different from packman.molecule.chain.get_residues()

	
	If the PDB file is constructed manually/ has multiple residues of the same ID, the first instance of the residue with that id is returned. Please avoid saving two residues with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get residue by the id

	Returns

	Residue of the given ID if successful; None otherwise.

	Return type

	residue (packman.molecule.Residue)

	
get_residues()

	Get the generator of corresponding ‘Residue’ objects of the ‘Chain’

	Returns

	generator of ‘Residue’ objects if successful, None otherwise.

	
get_sequence()

	Get the Amino acid sequence of the chain. (Protein chains only)

	Returns

	FASTA format string of the chain sequence.

	
set_hinges(new_hinges)

	Set/Add hinge to the ‘Chain’ object

	Parameters

	new_hinges (packman.molecule.annotations.Hinge) – The ‘Hinge’ User wishes to assign/add to the given ‘Chain’

	
set_id(new_id)

	Set the ID of the given ‘Chain’

	Parameters

	new_id (str) – The ID User wishes to assign to the given ‘Chain’

	
set_parent(parent)

	Set the Parent of the given ‘Residue’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘Residue’

	
set_property(property_name, value)

	Set the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule.hetatom module

packman.molecule.hetmol module

The ‘HetMol’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘HetMol’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import HetMol
help(HetMol)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.hetmol.HetMol(id, name, parent)

	Bases: object

This class contains the information about the ‘HetMol’ object (packman.molecule.Residue).

This class contains all the information available about the HetMol and stores the corresponding ‘Atom’ objects in itself. The Residue class is the second lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> HetMol> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Residue ID from the PDB file as it is. Each Residue in a PDB file Model/Frame has unique ID. (essential)

	name (str) – Residue Name from the PDB file as it is.

	parent (packman.molecule.Chain) – The Chain Object (parent) this Residue belongs to.

	
get_atom(key)

	Get the specific Atom by id/name. Please note that this is different than get_atoms()

	Parameters

	key (int/str) – Get atom by the id/name

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘HetMol’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_centerofgravity()

	Get the center of gravity of the given ‘HetMol’

Note

Yet to add the atomic masses.

	Returns

	Cartesian Coordinates as numpy.array of the centre of the gravity.

	
get_domain_id()

	Get the Domain Identifier of the given ‘HetMol’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_id()

	Get the ID of the ‘HetMol’

	Returns

	int if successful, None otherwise.

	
get_name()

	Get the Name of the ‘HetMol’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the Parent of the ‘HetMol’

	Returns

	packman.molecule.Chain if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘HetMol’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
set_domain_id(new_domain_id)

	Set the Domain Identifier of the given ‘HetMol’.

Note

Domain Identifiers Format:
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Parameters

	new_domain_id (str) – The Domain Identifies User wishes to assign to the given ‘HetMol’

	
set_id(new_id)

	Set the ID of the given ‘HetMol’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘HetMol’

	
set_name(new_name)

	Set the Name of the given ‘HetMol’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘HetMol’

	
set_parent(new_parent)

	Set the Parent of the given ‘HetMol’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘HetMol’

	
set_property(property_name, value)

	Set the Property of the given ‘HetMol’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule.model module

The ‘Model’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Model’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Model
help(Model)

Note

	The models are nothing but frames of the PDB file.

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.model.Model(id, AllAtoms, AllResidues, AllChains, AllHetAtoms, AllHetMols)

	Bases: object

This class contains the information about the ‘Chain’ object (packman.molecule.Chain).

This class contains all the information available about the Chain and stores the corresponding ‘Residue’ and ‘Hetmol’ objects in itself. The Chain class is the third lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Notes

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Model ID from the PDB file ordered from first to the last. Each Model in a PDB file has unique ID. (essential)

	AllAtoms ({packman.molecule.Atom}) – Dictionary of all the ‘Atom’ in the given model.

	AllResidues ({packman.molecule.Residue}) – Dictionary of all the ‘Residue’ in the given model.

	AllChains ({packman.molecule.Chain}) – Dictionary of all the ‘Chain’ in the given model.

	AllHetAtoms ({packman.molecule.HetAtom}) – Dictionary of all the ‘HetAtom’ in the given model.

	AllHetMols ({packman.molecule.HetMol}) – Dictionary of all the ‘HetMol’ in the given model.

	
calculate_bonds()

	Calculate the bonds in the given ‘Model’.

Currently, bonds are only calculated based on the following RCSB PDB resource file:
http://ftp.wwpdb.org/pub/pdb/data/monomers/aa-variants-v1.cif.gz

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
check_clashes(distance=0.77)

	Check if any atoms are too close to each other. This is important since too close atoms in the elastic network models can be very bad for the results.

Notes

	This function will be moved to the molecule manipulation package later

	Parameters

	distance (float) – The distance cutoff user wishes to defined as a clash radius (default:0.77; max bond length)

	Returns

	Number of clashes present according to the set cutoff.

	Return type

	clashes (int)

	
get_atom(idx)

	Get the atom of the given ID.

	Note: - This function is different from packman.molecule.chain.get_atoms() and also packman.molecule.residue.get_atom()

	
	If the PDB file is constructed manually/ has multiple atoms of the same ID, the first instance of the atom with that id is returned. Please avoid saving two atoms with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get atom by the id

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atom_byid(query_atom_id)

	Get the ‘Atom’ with corresponding ‘Atom’ ID

	Returns

	‘packman.molecule.Atom’ object if successful, None otherwise.

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘Model’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Model’ as a list of ‘Atom’ object

Note

	Backbone Atoms: CA, O, N, C

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_bond(idx)

	Return the specific bond with specific ID.

	Parameters

	idx (int) – Get the ‘Bond’ by the id

	Returns

	packman.molecule.Bond object if successful, None otherwise.

	
get_bonds()

	Return all the bonds in the given ‘Model’.

	Returns

	generator of packman.molecule.Bond objects if successful, None otherwise.

	
get_calpha()

	Get the C-Alpha atom of the ‘Model’ as an ‘Atom’ object.

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_chain(ChainID)

	Get the corresponding ‘Chain’ object

	Returns

	‘Chain’ object if successful, None otherwise.

	
get_chains()

	Get the list of corresponding ‘Chain’ objects of the ‘Model’

	Returns

	[packman.molecule.Chain] if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Chain’.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_hetatoms()

	Get the generator of corresponding ‘HetAtom’ objects of the ‘Model’

	Returns

	generator of ‘packman.molecule.HetAtom’ objects if successful, None otherwise.

	
get_hetmols()

	Get the generator of corresponding ‘HetMol’ objects of the ‘Model’

	Returns

	generator of ‘packman.molecule.HetMol’ objects if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Model’

	Returns

	int if successful, None otherwise.

	
get_parent()

	Get the ‘Protein’ parent of the ‘Model’ object.

	Returns

	‘packman.molecule.Protein’ object if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_residues()

	Get the generator of corresponding ‘Residue’ objects of the ‘Model’

	Returns

	array of ‘Residue’ objects if successful, None otherwise.

	
get_sequence()

	Get the Amino acid sequence of the chain. (Protein chains only)

	Returns

	FASTA format string of the chain sequence.

	
get_torsion(bond, neighbor1=None, neighbor2=None, radians=True)

	Calculate the torsion angle of the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that can measure the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	bond (packman.molecule.Bond) – The bond user wishes to calculate torsion angle to.

	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Return value of the angle in radians (returns value in degrees if False; Default : True)

	Returns

	The torsion angle in radians/degrees if sucessful, None otherwise.

	
set_id(new_id)

	Set the ID of the given ‘Model’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Model’

	
set_parent(new_parent)

	Set the ‘Protein’ object as a parent to the ‘Model’ object.

	Parameters

	new_parent (packman.molecule.Protein) – The ‘Protein’ object as a parent to the given ‘Model’

	
set_property(property_name, value)

	Set the Property of the given ‘Model’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
set_torsion(bond, theta, neighbor1=None, neighbor2=None, radians=True)

	Set the torsion for the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that change the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	bond (packman.molecule.Bond) – The bond user wishes to rotate.

	theta (int) – Set the torsional angle (see the ‘radians’ parameter description)

	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Parameter ‘theta’ will be assuned to be in Radians if True, Degrees will be assumed when False. (Default : True)

	Returns

	True if successfulm None otherwise

packman.molecule.molecule module

The ‘Molecule’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Model’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Model
help(Model)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.molecule.molecule.download_structure(pdbid, save_name=None, ftype='cif')

	This class helps user to download the 3D structure of the protein and save it on a disk.

Example:

from packman import molecule
molecule.download_structure('1prw')

	Parameters

	
	pdbid (str) – A Unique 4 Letter PDB ID (eg.. 1PRW)

	save_name (str) – Save name of the downloaded file (extension will be added automatically depending on the ftype argument).

	ftype (str) – Format name (‘.cif’ or ‘.pdb’)

	
packman.molecule.molecule.load_cif(filename)

	Load the CIF (.cif) file into the ‘Protein’ Object.

	Links::

	
	https://www.rcsb.org/docs/general-help/identifiers-in-pdb

	
packman.molecule.molecule.load_pdb(filename)

	Load the PDB (.pdb) file into the ‘Protein’ Object.

	
packman.molecule.molecule.load_structure(filename, ftype='cif')

	Load a Molecule from a file.

This class helps user to load the 3D structure of the protein onto a packman.molecule.Protein object.

Example:

from packman import molecule
molecule.download_structure('1prw')
molecule.load_structure('1prw.cif')

	Parameters

	
	filename (str) – Name of the input file

	ftype (str) – Format name (‘cif’ or ‘pdb’); Default: cif

	Returns

	Protein object containing all the information about the Protein

	Return type

	packman.molecule.Protein

packman.molecule.protein module

The ‘Protein’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Protein’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Protein
help(Protein)

Note

	Top in the hierarchy

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.protein.Protein(id, Models)

	Bases: object

This class contains the information about the ‘Protein’ object (packman.molecule.Protein).

This class contains all the information available about the Protein and stores everything in itself. The Protein class is the highest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Protein ID

	name (str) – Protein Name

	Models ([packman.molecule.Model]) – Protein models/frames of the structure. (NMR files usually have multiple conformers of the same protein)

	
get_data()

	Get the misc data (other than coordinates) from the file.

	Returns

	Array of Strings

	
get_id()

	Get the ID for the Protein object.

	Returns

	String if successful, None otherwise.

	
get_models()

	Get all the models at once. Useful for the iterations.

	Returns

	Generator of all the models in the PDB file.

	
get_sequence(all_models=False)

	summary

	Parameters

	all_models (bool, optional) – Get sequence of the all frames; useless if sequence accross the models is identical. Defaults to False.

	Returns

	Protein sequence in FASTA format.

	
set_data(data)

	Set the misc data (other than coordiantes) to the Protein object.

	Parameters

	data (array) – Array of String

Note

	All the properties are planned to be put in specific format to achieve complete interformat conversion.

	
write_cif(filename)

	Write a PDBx/mmCIF (.cif) file from the Protein object.

	Parameters

	filename (str) – Name of the output file user wishes to assign.

	
write_pdb(filename)

	Write a PDB (.pdb) file from the Protein object.

	Parameters

	filename (str) – Name of the output file user wishes to assign.

	
write_structure(filename, ftype='cif')

	Write the ‘Protein’ object to the file.

	CIF file format is default because it has more advantages over PDB format and PDB format is ‘frozen’. Please read following for more information::

	https://www.wwpdb.org/documentation/file-formats-and-the-pdb

	Parameters

	
	filename (str) – Name of the output file user wishes to assign.

	ftype (str) – Format for the file (pdb / cif)

packman.molecule.residue module

The ‘Residue’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Residue’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Residue
help(Residue)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.residue.Residue(id, name, parent)

	Bases: object

This class contains the information about the ‘Residue’ object (packman.molecule.Residue).

This class contains all the information available about the Residue and stores the corresponding ‘Atom’ objects in itself. The Residue class is the second lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Residue ID from the PDB file as it is. Each Residue in a PDB file Model/Frame has unique ID. (essential)

	name (str) – Residue Name from the PDB file as it is.

	parent (packman.molecule.Chain) – The Chain Object (parent) this Residue belongs to.

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
get_atom(key)

	Get the specific Atom by id/name. Please note that this is different than get_atoms()

	Parameters

	key (int/str) – Get atom by the id/name

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘Residue’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Residue’ as a list of ‘Atom’ object

Note

Some files like 1k20 are showing multiple backbone atoms because seperation of models is based on [Model] in this tool (Maybe Solved)

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_calpha()

	Get the C-Alpha atom of the residue as an ‘Atom’ object.

	Returns

	packman.molecule.Atom if successful, None otherwise.

	
get_centerofgravity()

	Get the center of gravity of the given ‘Residue’

Note

Yet to add the atomic masses.

	Returns

	Cartesian Coordinates as numpy.array of the centre of the gravity.

	
get_changed_alphabet()

	Converts three letter amino acid code to one letter and vise-versa

	Returns

	Three or one letter amino acid code depending and opposite of the argument provided.

	Return type

	AA (string)

	
get_domain_id()

	Get the Domain Identifier of the given ‘Residue’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Residue’.

Please note that if the Entropy is calculated using specific atoms, this option might not give results for the amino acids that are not included because of the specific selection. Please see the documentation for more details.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_id()

	Get the ID of the ‘Residue’

	Returns

	int if successful, None otherwise.

	
get_name()

	Get the Name of the ‘Residue’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the Parent of the ‘Residue’

	Returns

	packman.molecule.Chain if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Residue’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
get_tip()

	Get the tip atom of the given ‘Residue’ as an ‘Atom’ object

Note

ALA and GLY are small so their tip is C-alpha

	Returns

	packman.molecule.Atom if successful, None otherwise.

	
set_domain_id(new_domain_id)

	Set the Domain Identifier of the given ‘Residue’.

Note

Domain Identifiers Format:
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Parameters

	new_domain_id (str) – The Domain Identifies User wishes to assign to the given ‘Residue’

	
set_entropy(entropy_type, value)

	Set the Packing Entropy of the given ‘Residue’.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
set_id(new_id)

	Set the ID of the given ‘Residue’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Residue’

	
set_name(new_name)

	Set the Name of the given ‘Residue’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘Residue’

	
set_parent(new_parent)

	Set the Parent of the given ‘Residue’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘Residue’

	
set_property(property_name, value)

	Set the Property of the given ‘Residue’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule package

The ‘packman.molecule’ module is used to read, write, manipulate and analyze the molecule.

This module is the base of the tool packman. It is used as a base module for all the packman utilities
such as HingePrediction, Compliance and Right Domain ANM. The molecule module can also be an API to utilize the objects such
as Atom, Residue, Chain, Model and Protein. Please read the documentation and tutorials for more details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Notes

	Tutorial link: https://py-packman.readthedocs.io/en/latest/tutorials/molecule.html#tutorials-molecule

Example

	To Load the molecule::

	from packman import molecule
molecule.download_structure(‘1prw’,’1prw.pdb’)
mol = molecule.load_structure(‘1prw.pdb’)

Submodules

	packman.molecule.annotations module

	packman.molecule.atom module

	packman.molecule.chain module

	packman.molecule.hetatom module

	packman.molecule.hetmol module

	packman.molecule.model module

	packman.molecule.molecule module

	packman.molecule.protein module

	packman.molecule.residue module

packman.utilities.utilities module

This class contains all the utilities that are neccessary for carriying out structural superimposition, sequence matching etc.

	
packman.utilities.utilities.RMSD(group1, group2, use='calpha', ids=[])

	

	
packman.utilities.utilities.WriteOBJ(atoms, faces, fh)

	Write the .obj file to visualize the obtain alpha shape tesselations.

	Parameters

	
	atoms (packman.molecule.Atom) – Atoms (Just for the node records)

	faces ([float]) – SelectedTesselations (See the packman.apps.predict_hinge)

	fh (file) – Output file with .obj extension

	
packman.utilities.utilities.change_alphabet(AA)

	Converts three letter amino acid code to one letter and vise-versa

	Parameters

	AA (string) – Three or one letter amino acid code.

	Returns

	Three or one letter amino acid code depending and opposite of the argument provided.

	Return type

	AA (string)

	
packman.utilities.utilities.load_hinge(filename)

	Load the hinge information neccessary for the hd-ANM and other methods.

About .hng File:
- hdANM requires the information about hinges and domains in the .hng format.
- Each column in the .hng file is TAB delimited.
- Each row in the .hng file follows collowing pattern:

Filename_ChainID Domain/HingeId ResidueStartPosition:ResidueEndPosition

Example of .hng file for PDBID 1EXR:

1EXR_A D1 1:70
1EXR_A H1 70:90
1EXR_A D2 90:148

Above format means that there are two domains (D1 and D2) separated by a hinge (H1). D1 stretches from residue 1 to 70; D2 stretches from 90 to 148 and hinge H1 is in the middle.

	Parameters

	filename (string) – filepath and name of the .hng file

	Returns

	residue based hinge and domain information.

	Return type

	HNGinfo (dictionary)

	
packman.utilities.utilities.superimporse(reference, target, use='calpha', ids=[], change_target=True)

	This function is used to superimpose the Target Chain(coordinates will be changed) on the Reference Chain(coordinates will change).

The superimposition currently is done on the basis of matching Residue ID. If both the proteins have unequal amount of residues,
still their matching residues will be used for the superimposition.

It is important to note that sometimes proteins (although same type and chain) have different numbering scheme.
In such case, the superimposition will not be carried out. Change the IDs of the taget/reference in such a way that it will match each other.

For more information about how to change ID of the residue, read : packman.molecule.Residue class

	Parameters

	
	reference (packman.molecule.Chain) – Chain whose coordinates will remain same and will be used as a reference.

	target (packman.molecule.Chain) – Chain whose coordinates will be changed according to the reference chain.

	use (str) – Which atoms to be used for superimposition (Options: calpha, backbone)

	ids (list) – Use only particular residues to align (Provide IDs) eg… ids=[1,2,5,77] will use only 1,2,5 and 77th residues to align two chains

	change_target (bool) – Change the coordinates of the target chain based on the reference

	Returns

	Rotation matrix for Target Chain w.r.t Reference Chain.
t (numpy.array): Translation vector for Target Chain w.r.t Reference Chain.

	Return type

	R (numpy.matrix)

packman.utilities package

Submodules

	packman.utilities.utilities module

packman package

The py-PACKMAN is a collection of subpackages built on the packman.molecule API.

Please check the corresponding packages and tutorials for more information about the package use.

Subpackages

	packman.anm package
	Submodules
	packman.anm.anm module

	packman.anm.hd_anm module

	packman.apps package
	Submodules
	packman.apps.calculate_entropy module

	packman.apps.predict_hinge module

	packman.bin package
	Submodules
	packman.bin.PACKMAN module

	packman.constants package
	Submodules
	packman.constants.Constants module

	packman.entropy package
	Submodules
	packman.entropy.entropy module

	packman.molecule package
	Submodules
	packman.molecule.annotations module

	packman.molecule.atom module

	packman.molecule.chain module

	packman.molecule.hetatom module

	packman.molecule.hetmol module

	packman.molecule.model module

	packman.molecule.molecule module

	packman.molecule.protein module

	packman.molecule.residue module

	packman.utilities package
	Submodules
	packman.utilities.utilities module

rd-anm_run module

setup module

packman.anm.anm module

The ‘ANM’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘ANM’ object documentation for details.

	Example::

	from packman.anm import ANM
help(ANM)

Notes

	Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance

	For more details about the parameters for compliance, or to site this, read the following paper: https://doi.org/10.1002/prot.25968

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	Part Credits: Ambuj Kumar (ambuj@iastate.edu)

	
class packman.anm.anm.ANM(atoms, gamma=1.0, dr=15.0, power=0, pf=None)

	Bases: object

This class contains the functions essential to carry out the Anisotropic Network Model and Compliance analysis.

Notes:
* Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance
* For more details about the parameters for compliance, or to site this, read the following paper:

	Parameters

	
	coords ([float]) – Two dimentional array of three dimentional points in the space.

	gamma (float, optional) – Spring Constant Value. Defaults to 1.0.

	dr (float, optional) – Distance Cutoff. Defaults to 15.0.

	power (int, optional) – Power of distance (mainly useful in non-parametric mode). Defaults to 0.

	pf (None, optional) – Parameter free model. (Check the dr and power params) Defaults to None.

	
calculate_decomposition()

	Decompose the Hessian Matrix of the ANM model.

Note

Eigen values and Eigen Vectors are calculated. use ANM().get_eigenvalues() and ANM().get_eigenvectors() to obtain them.

	
calculate_fluctuations(endmode=None)

	Calculate the Fluctuations of the ANM model.

The fluctualtions/ theoretical b-factors are calculated using this method.

Note

	Fluctuations are calculated. use ANM().get_fluctuations() to obtain the fluctuations.

	Endmode needs to be put in the code if and when required.

	
calculate_hessian()

	Build the Hessian Matrix of the ANM model.

This is the most essential step for ANM/ Compliance analysis.

Notes

	Hessian matrix is built; use ANM().get_hessian() to obtain the hessian matrix.

	
calculate_movie(mode_number, scale=1.5, n=20, ftype='cif')

	Get the movie of the obtained LINEAR modes. The first frame is the original structure and the projection progresses in positive (+) direction, returning to original structure and then in negative direction (-) again returning to the original structure.

	Parameters

	
	mode_number (int) – Mode number. (first non-rigid mode is 6th)

	scale (float) – Multiplier; extent to which mode will be extrapolated. Defaults to 1.5

	n (int) – Number of frames in output (should be =>8 and ideally multiple of 4) Defaults to 20

	ftype (string) – Extension of the output file (.cif / .pdb)

Note

	Scale and n parameters should be redesigned.

	direction is the variable which be allow user to explore only positive or only negative direction of the modes.

	Returns

	True if successful; false otherwise.

	
calculate_stiffness_compliance()

	Carry out the Stiffness and Compliance analysis of the ANM model.

Citation:
Scaramozzino, D., Khade, P.M., Jernigan, R.L., Lacidogna, G. and Carpinteri, A.
(2020), Structural Compliance ‐ A New Metric for Protein Flexibility. Proteins. Accepted Author Manuscript.
doi:10.1002/prot.25968

Note

	
	Obtain the following properties by using functions followed by it:

	Stiffness Map : ANM().get_stiffness_map()
Compliance Map : ANM().get_compliance_map()
Stiffness Profile : ANM().get_stiffness_profile()
Compliance Profile: ANM().get_compliance_profile()

	
get_compliance_map()

	Get the Compliance Map obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Compliance Map if successful; None otherwise

	Return type

	numpy.ndarray

	
get_compliance_profile()

	Get the Compliance profile obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Compliance profile if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvalues()

	Get the Eigenvalues obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvalues if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvectors()

	Get the Eigenvectors obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_fluctuations()

	Get the Fluctuations obtained from Eigenvectors and Eigenvalues

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian()

	Get the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() is called before calling this function. (will return None otherwise)

	Returns

	Hessian matrix if successful; None otherwise

	Return type

	numpy.ndarray

	
get_stiffness_map()

	Get the Stiffness Map obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Stiffness Map if successful; None otherwise

	Return type

	numpy.ndarray

	
get_stiffness_profile()

	Get the Stiffness profile obtained from Stiffness and Compliance Analysis

Notes

	Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)

	Stiffness=1/Compliance

	Returns

	Stiffness profile if successful; None otherwise

	Return type

	numpy.ndarray

packman.anm.hd_anm module

The ‘hdANM’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘hdANM’ object documentation and the publication for details.

Citation:

Pranav M. Khade, Domenico Scaramozzino, Ambuj Kumar, Giuseppe Lacidogna, Alberto Carpinteri, Robert L. Jernigan, hdANM: a new comprehensive dynamics model for protein hinges, Biophysical Journal, 2021, https://doi.org/10.1016/j.bpj.2021.10.017

About .hng File:
- hdANM requires the information about hinges and domains in the .hng format.
- Each column in the .hng file is tab delimited.
- Each row in the .hng file follows collowing pattern:

Filename_ChainID Domain/HingeId ResidueStartPosition:ResidueEndPosition

Example of .hng file for PDBID 1EXR:

1EXR_A D1 1:70
1EXR_A H1 70:90
1EXR_A D2 90:148

Above format means that there are two domains (D1 and D2) separated by a hinge (H1). D1 stretches from residue 1 to 70; D2 stretches from 90 to 148 and hinge H1 is in the middle.

Example:

from packman.anm import hdANM
help(hdANM)

Notes

	Tutorial: https://py-packman.readthedocs.io/en/latest/tutorials/hdANM.html#tutorials-hdanm

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.anm.hd_anm.hdANM(atoms, hng_file, gamma=1.0, dr=15.0, power=0, pf=None)

	Bases: object

This class contains the functions essential to carry out the Hinge-Domain-Anisotropic Network Model and Compliance analysis.

Notes:
* Tutorial:
* For more details about the parameters for compliance, or to site this, read the following paper:

	Parameters

	
	atoms ([packman.molecule.Atom]) – Two dimentional array of atoms.

	hng_file (string) – .hng filename and path. (Contains the information about hinge and domains on the protein)

	gamma (float, optional) – Spring Constant Value. Defaults to 1.0.

	dr (float, optional) – Distance Cutoff. Defaults to 15.0.

	power (int, optional) – Power of distance (mainly useful in non-parametric mode). Defaults to 0.

	pf (None, optional) – Parameter free model?. Defaults to None.

	Raises

	
	Exception – [description]

	Exception – [description]

	Exception – [description]

	
calculate_RT_eigen_vectors()

	Calculate the reverse transformed vectors from the hdANM eigenvectors.

Reverse transformed means that the hdANM eigenvector of dimension: 6D+3H x 6D+3H (D: Number of domains; H: Number of hinge atoms) are converted to 3N x 6D+3H (N: Number of atoms)

Note

	It was refered as ‘exploded vector’ utill version 1.3.3

	
calculate_cross_correlation(n_modes='all')

	Calculate the cross correlation matrix for the hdANM modes.

Crosscorrelation matrix is generated for all modes by default. Please change the n_modes parameter to restrict modes.

	Parameters

	n_modes (-) – Number of modes that need to be considered to calculate the cross correlation matrix.

	
calculate_decomposition(include_mass=True)

	Decompose the Hessian Matrix of the hdANM model.

	Parameters

	include_mass (bool) – Amino Acid Residue mass/Atomic mass should be (True) or shouldn’t be (False) included for the decomposition. Defaults to True

Note

	Eigen values and Eigen Vectors are calculated. use hdANM().get_eigenvalues() and hdANM().get_eigenvectors() to obtain them.

	Currently only molecular weight is included in case of Amino Acid Residue(coarse grained) mass.

	Mass of the Amino Acid Residues/Atoms can be found in /packman/constants/Constants.py

ie…
from packman.constants import amino_acid_molecular_weight
from packman.constants import atomic_weigh

	
calculate_fluctuations()

	Calculate the Fluctuations of the hd-ANM model.

The fluctualtions/ theoretical b-factors are calculated using this method.

Note

	Fluctuations are calculated. use hdANM().get_fluctuations() to obtain the fluctuations.

	Endmode needs to be put in the code if and when required.

	hdANM().fluctuations stores the output of this function.

	
calculate_hessian(mass_type='unit')

	Build the Hessian Matrix of the hdANM model.

This is the most essential step for hdANM. It picks up blocks from ANM hessian matrix and puts it in the format described in the paper.

	Parameters

	mass_type (unit/atom/residue) – Whether to use unit (1), atomic weights or residue mass for the mass matrix.

Notes

	Possible argument removal for the decomposition function

	use hdANM().domain_hessian, hdANM().domain_mass_matrix and hdANM().domain_info to access output of this function

	Mass of the Amino Acid Residues/Atoms can be found in /packman/constants/Constants.py

ie…
from packman.constants import amino_acid_molecular_weight
from packman.constants import atomic_weigh

	
calculate_hessian_pseudoinverse(n_modes='all')

	Calculate the hessian pseudoinverse for the hd-ANM modes

Pseudoinverse is calculated using this methd. Please note that first 6 rigid modes are eliminated in this calculation.

Note

	Can be called on demand or can be called from get method automatically (Needs thinking)

	
calculate_movie(mode_number, scale=1.5, n=20, extrapolation='curvilinear', ftype='cif', ca_to_aa=False)

	This function generates the dynamic 3D projection of the normal modes obtained using hd-ANM. The 3D projection can be linearly extrapolated or curvilinearly extrapolated depending on the choices. The first frame is the original structure and the projection progresses in positive (+) direction, returning to original structure and then in negative direction (-) again returning to the original structure.

	Parameters

	
	mode_number (int) – Mode number. (first non-rigid mode is 6th)

	scale (float) – Multiplier; extent to which mode will be extrapolated. Defaults to 1.5

	n (int) – Number of frames in output (should be =>8 and ideally multiple of 4) Defaults to 20

	extrapolation (linear/curvilinear) – Extrapolation method Defaults to “curvilinear”

	ftype (string) – Extension of the output file (.cif / .pdb)

	ca_to_aa (boolean) – If only single atom type is used (often C-alpha atom only), enabling extrapolates the C-alpha motion to all the atoms. (Default: False)

Note

	Scale and n parameters should be redesigned.

	direction is the variable which be allow user to explore only positive or only negative direction of the modes.

	Returns

	True if successful; false otherwise.

	
get_RT_eigen_vectors()

	Get the Reverse Transformed vectors from the hdANM eigenvectors.

Reverse transformed means that the hdANM eigenvector of dimension: 6D+3H x 6D+3H (D: Number of domains; H: Number of hinge atoms) are converted to 3N x 6D+3H (N: Number of atoms)

Note

	It was refered as ‘exploded vector’ utill version 1.3.3

	Returns

	Reverse Transformed Vector if successful; None otherwise

	Return type

	numpy.ndarray

	
get_crosscorrelation_matrix(n_modes='all')

	

	
get_eigenvalues()

	Get the Eigenvalues obtained by decomposing the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvalues if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvectors()

	Get the Eigenvectors obtained by decomposing the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() and hdANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_fluctuations()

	Get the Fluctuations obtained from Eigenvectors and Eigenvalues

Notes

	Make sure that the hdANM().calculate_hessian(), hdANM().calculate_decomposition() and hdANM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	Fluctuations if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian()

	Get the Hessian Matrix of the hd-ANM model.

Notes

	Make sure that the hdANM().calculate_hessian() is called before calling this function. (will return None otherwise)

	Returns

	Hessian matrix if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian_block(Index1, Index2)

	Calculate Hij (Hessian matrix component) using equation . ()

Notes:

	Returns

	Hij if successful; None otherwise

	Return type

	numpy.ndarray

	
get_hessian_pseudoinverse(n_modes='all')

	Get the Pseudoinverse of the hdANM model.

	Returns

	Pseudoinverse if successul; None otherwise

	Return type

	numpy.ndarray

packman.anm package

The ‘packman.anm’ module is a collection of anm methods and applications built on packman.molecule API.

Notes

	Current apps list: - packman.anm.ANM, packman.anm.RDANM

	Cite the following paper:

Example

	Review the packman.bin.PACKMAN.py file for the app use.

Submodules

	packman.anm.anm module

	packman.anm.hd_anm module

packman.apps.calculate_entropy module

The ‘predict_hinge’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘predict_hinge’ object documentation for details.

Example:

from packman.apps import calculate_entropy
help(calculate_entropy)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.apps.calculate_entropy.entropy_cli(args, mol)

	Command-line Interface for the ‘entropy’ command. Please check the packman.bin.PACKMAN file for more details.

This function is for the CLI and not an integral function for the API.

	Parameters

	
	args (parser.parse_args()) – The arguments that were passed by the user to the PACKMAN-hinge app.

	mol (packman.molecule.Protein) – The ‘Protein’ object for the anaylsis.

packman.apps.dci module

The ‘DCI’ object host file.
This is file information, not the class information. This information is only for the API developers.
Please read the ‘DCI’ object documentation for details.
Example:

from packman.apps import DCI
help(DCI)

Notes

	Tutorial:

	For more details about the parameters for compliance, or to site this, read the following paper:

	Authors:

	
	Ambuj Kumar (ambuj@iastate.edu)

	Pranav Khade (https://github.com/Pranavkhade)

	
class packman.apps.dci.DCI(mol, cutoff=7.0, chain=None, n_com=None)

	Bases: object

This class contains the code for DCI analysis.

Notes

	Tutorial:

	Webserver:

	Publication:

	Parameters

	
	mol (packman.molecule.Protein) – Structure in the ‘Protein’ object.

	cutoff (float) – GNM distance cutoff. Default set to 7.5

	chain (string) – Protein chain id. Default is set to using all chains.

	n_com (int) – Number of communities to generate. Default the program will explore best possible cluster numbers for the given data.

	
calcualte_pymol_commands(output_file)

	Write all the communities in py-mol importable format.

	Parameters

	output_file (file) – output file.

	Returns

	True if successful; None otherwise.

	
calculate_CH_plot()

	Calculate CH plot for the cluster numbers.

File is saved as pdbid_CH_Score.png in the present working directory. Please check the filename for invalid characters if there are errors.

	Returns

	True if successful; None otherwise.

	
calculate_cluster(dist_mat, max_iter=21)

	Calculates the best possible communities/clusters.

self.store_score calculated CH score for every clustering number. (Read the paper for more details)

	Parameters

	
	dist_mat (numpy.array) – 1 - cross-correlation matrix.

	max_iter (int) – Maximum number of iterations for cluster counts.

	Returns

	True if successful; None otherwise.

	
calculate_crosscorrelation()

	Calculate the cross-correlation. (Read the paper for more details)

	Returns

	True if successful; None otherwise.

	
calculate_decomposition()

	Eigen decomposition calculation.

Access the eigen values and eigen vectors with self.eigen_values and self.eigen_vectors

	Returns

	True if successful; None otherwise.

	
calculate_kirchoff(gamma=1.0)

	Calculate the Gaussian Network Model (GNM) Kirchoff Matrix.

The matrix is stored in the self.GNM_MAT variable.

	Returns

	True if successful; None otherwise.

	
calculate_windows(iterable)

	Yield range of consecutive numbers.

Internal Function. (printing operation)

	
get_cluster_labels()

	Get the cluster label of the ‘most optimal’ community (Read the paper for more details)

	Returns

	cluster label of the ‘most optimal’ community

	Return type

	best_community ([int])

	
get_communities()

	Get all the communities generated using DCI.

	Returns

	List of communities with number of communities as a key.

	Return type

	store_comminities (dict)

	
get_crosscorrelation()

	Get the cross-correlation.

	Returns

	Cross-correlation matrix.

	Return type

	C (numpy.array)

	
get_labels(community_obj)

	Get the dictionary of individual cluster labels for each residue.

	Parameters

	community_obj ([int]) – Output from hierarchical clustering.

	
get_n_communities(dist_mat, n)

	Get the number of communities

	Parameters

	
	dist_mat (numpy.array) – Crosscorelation based euclidean distance.

	n (int) – Number of desired community.

	Returns

	Label assigned to each residue.

	Return type

	label ([int])

	
get_range(iterable)

	Get the consequent numbers in the list.

	Parameters

	iterable ([int]) – Array containing iterable.

	Returns

	First and Last element of the consequent numbers.

	Return type

	first, last (int,int)

	
packman.apps.dci.dci_cli(args, mol)

	

packman.apps.hdanm module

	
packman.apps.hdanm.hdanm_cli(args, mol)

	

packman.apps.predict_hinge module

The ‘predict_hinge’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘predict_hinge’ object documentation for details.

Example:

from packman.apps import predict_hinge
help(predict_hinge)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.apps.predict_hinge.hinge_cli(args, mol)

	Command-line Interface for the ‘hinge’ command. Please check the packman.bin.PACKMAN file for more details.

This function is for the CLI and not an integral function for the API.

	Parameters

	
	args (parser.parse_args()) – The arguments that were passed by the user to the PACKMAN-hinge app.

	mol (packman.molecule.Protein) – The ‘Protein’ object for the anaylsis.

	
packman.apps.predict_hinge.predict_hinge(atoms, outputfile, Alpha=inf, method='alpha_shape', filename='Output.pdb', MinimumHingeLength=5, nclusters=4)

	This function is used to carry out hinge prediction given the parameters.

Notes

	The packman.bin.PACKMAN uses this function

	Ideally, the alpha values should be scanned from 0 to 10 to obtain conclusively repetative hinges (Use ‘’ for this purpose)

	
	Please refer to the following paper for the details on the algorithm and citation:

	Pranav M. Khade, Ambuj Kumar, Robert L. Jernigan, Characterizing and Predicting Protein Hinges for Mechanistic Insight,
Journal of Molecular Biology, Volume 432, Issue 2, 2020, Pages 508-522, ISSN 0022-2836, https://doi.org/10.1016/j.jmb.2019.11.018.
(http://www.sciencedirect.com/science/article/pii/S0022283619306837)

	Tutorial Link: https://py-packman.readthedocs.io/en/latest/tutorials/hinge_predict.html#tutorials-predict-hinge

	The predicted hinges are stored in packman.molecule.Chain object as an packman.molecule.Hinge object.

	Parameters

	
	atoms ([packman.molecule.Atom]) – PACKMAN uses backbone atoms of the protein. However, any number and type of atoms can be used (Alpha value range will change)

	outputfile (file) – Output File.

	Alpha (float, optional) – Please refer to the paper for this parameter. Defaults to float(‘Inf’).

	method (str, optional) – Please refer to the paper for this parameter. Defaults to ‘alpha_shape’.

	filename (str, optional) – Please refer to the paper for this parameter. Defaults to ‘Output.pdb’.

	MinimumHingeLength (int, optional) – Please refer to the paper for this parameter. Defaults to 5.

	nclusters (int, optional) – Please refer to the paper for this parameter. Defaults to 4.

	Returns

	The Alpha Shape (Subset of Delaunay Tesselations)

	Return type

	alpha_shape

packman.apps package

The ‘packman.apps’ module is a collection of applications built on packman.molecule API.

Notes

	Current apps list: - predict_hinge : A program to predict the hinge on the molecule given the atoms and relevent parameters

	Example::

	
	Review the packman.bin.PACKMAN.py file for the app use.

Submodules

	packman.apps.calculate_entropy module

	packman.apps.dci module

	packman.apps.hdanm module

	packman.apps.predict_hinge module

packman.bin.GUI module

The PACKMAN Graphical User Interface (GUI) host file.

	How to use::

	python -m packman gui #(For GUI)
python -m packman #(For CLI)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.bin.GUI.HingePrediction(parent)

	Bases: tkinter.Frame

	
browseFiles()

	

	
hide()

	

	
run_PACKMAN()

	PACKMAN Hinge Prediction Algorithm

	
show()

	

	
class packman.bin.GUI.HomePage(parent)

	Bases: tkinter.Frame

	
hide()

	

	
show()

	

	
class packman.bin.GUI.Skeleton(frame_name)

	Bases: tkinter.Tk

	
show_frame(frame_name)

	

	
class packman.bin.GUI.Voronoi_Packing_Entropy_GUI(parent)

	Bases: tkinter.Frame

	
browseFiles()

	

	
hide()

	

	
run_Entropy()

	PACKMAN Hinge Prediction Algorithm

	
show()

	

	
packman.bin.GUI.get_version(rel_path)

	To find out the version of the

	
class packman.bin.GUI.hdANM_GUI(parent)

	Bases: tkinter.Frame

	
browseFiles(fill_box_num, filetypes)

	

	
hide()

	

	
run_hdANM()

	

	
show()

	

	
packman.bin.GUI.load_gui()

	

	
packman.bin.GUI.read(rel_path)

	

	
class packman.bin.GUI.top_menu(parent)

	Bases: tkinter.Frame

packman.bin.PACKMAN module

The PACKMAN Command-line Interface (CLI)

	How to use::

	python -m packman gui #(For GUI)
python -m packman #(For CLI)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.bin.PACKMAN.IO()

	User interface for the user to provide the parameters

	Returns

	Various arguments in various formats

	Return type

	Namespace

	
packman.bin.PACKMAN.load_cli()

	Main Function for PACKMAN.

Kernel of the PACKMAN interface.

	
packman.bin.PACKMAN.main()

	Gatewayto CLI and GUI

packman.bin package

The ‘packman.bin’ is a collection of binaries built on packman.molecule API.

Notes

	Current binary list: - PACKMAN.py : A program to predict the hinge on the molecule given the atoms and relevent parameters

Example

packman -h

OR

python3 -m packman -h

Submodules

	packman.bin.GUI module

	packman.bin.PACKMAN module

packman.constants.Constants module

packman.constants package

Submodules

	packman.constants.Constants module

packman.entropy.entropy module

The Entropy method(s) host file.

This is file information, not the class information. This information is only for the API developers.
Please read the corrosponding object documentation for details.

Example:

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.entropy.entropy.PackingEntropy(atoms, chains=None, probe_size=1.4, onspherepoints=30)

	Bases: object

This class contains all the methods required to obtain a protein complex’s entropy.
Given a group of atoms in the :mod:’packman.molecule.Atom’ objects, the entropy for the each amino acid will be returned.
The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.
:param atoms: The group of atoms user wisher to calculate Packing Entropy with.
:type atoms: [packman.molecule.Atom]
:param chains: Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).
:type chains: [str]/str
:param probe_size: Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)
:type probe_size: float
:param onspherepoints: Number of points to be generated around each point for the surface (Read the Publication for more details)
:type onspherepoints: int

	
calculate_entropy()

	Calculate the Packing Entropy with the current setup.

	
calculate_spherepoints(atom)

	Given a single point, this function generates point cloud around the given points.
:param atom: Atom object around which the sphere of point cloud to be generated.
:type atom: [packman.molecule.Atom]

	
calculate_surafacepoints()

	Calculate the surface points with the current setup.

	
get_surafacepoints()

	Get the surface points around the given set of atoms in the protein.
:returns: Array of 3D points around the given set of atoms in the protein.
:rtype: [[float]]

	
get_total_chain_entropy(chain)

	The sum of Packing Entropies for the Residues in the provided atoms and chain.

Please note that the entropy for the chain you are selecting might not exist if you have not calculated it properly. Please make sure to run calculate_entropy() function properly.
:param chain: chain ID of for the chain you wish to get the entropy.
:type chain: str

	
get_total_entropy()

	The sum of Packing Entropies for the Residues in the provided atoms.
:returns: The sum of Residue Entropies (float)

	
get_total_packing_fraction()

	The sum of Packing Fraction for the Residues in the provided atoms.

	Returns

	The sum of the Residue Packing Fraction (float)

packman.entropy package

The ‘packman.entropy’ module is a collection of entropy methods and applications built on packman.molecule API.

Notes

	Current apps list: - packman.PackingEntropy

	Cite the following paper:

Submodules

	packman.entropy.entropy module

packman.geometry.geometry module

The gemotry objects host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘geometry’ object documentation for details.

Example:

from packman import geometry
help(geometry)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.geometry.geometry.AlphaShape(atoms, alpha, get_graph=False, write_objfile=None)

	Get the Alpha Shape of the atoms.

Given set of atoms as ‘Atom’ (packman.molecule.Atom) object(s) and the alpha value, this class will calculate and return the alpha shape tessellations. It will also write the .obj file if the filename is provided as an input.

Notes

	Tip: If you do not want to use the function multiple times to save computation, calculate it once with alpha = float(‘Inf’) and then use the tessellations to calculate radius and save it as a dictionary to retrieve. Tessellations with any cutoff.

	
	For more information on the alpha shape, read the following paper:

	EdelsbrunnerandE. P. M ̈ucke.Three-dimensional alpha shapes.
Manuscript UIUCDCS-R-92-1734, Dept.Comput.Sci. ,Univ.Illinois, Urbana-Champaign, IL, 1992.

	Parameters

	
	atoms (packman.molecule.Atom) –

	alpha (float) –

	get_graph (networkx.Graph) –

	write_objfile (str) –

	Returns

	
	Alpha Shape Tessellations ; if ‘get_graph’ = False

	Alpha Shape Tessellations, Protein Graph ; if ‘get_graph’ = True

	
packman.geometry.geometry.Circumsphere(Tetrahydron)

	Get the Circumsphere of the set of four points.

Given any four three dimentional points, this function calculates the features of the circumsphere having the given four points on it’s surface.

	Parameters

	Tetrahydron ([packman.molecule.Atom] or [[X,Y,Z]]) – Either packman.molecule.Atom objects or 3D corrdinates.

	Returns

	The 3D coordinates of the geometrical center of the given four points, Radius of the circumsphere made up of given four points in that order.

	Return type

	[Centre, Radius] (float)

packman.geometry package

The ‘packman.geometry’ module is a collection of geometry objects built on packman.molecule API.

Tutorials:

Submodules

	packman.geometry.geometry module

packman.gnm.gnm module

The ‘GNM’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘GNM’ object documentation for details.

	Example::

	from packman.GNM import GNM
help(GNM)

Notes

	Tutorial:

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	Part Credits: Ambuj Kumar (ambuj@iastate.edu)

	
class packman.gnm.gnm.GNM(atoms, gamma=1.0, dr=7.3, power=0)

	Bases: object

This class contains the functions essential to carry out the Gaussian Network Model.

Notes:
* Tutorial:

	Parameters

	
	coords ([float]) – Two dimentional array of three dimentional points in the space.

	gamma (float, optional) – Spring Constant Value. Defaults to 1.0.

	dr (float, optional) – Distance Cutoff. Defaults to 7.3 (Yang et. al., Protein elastic network models and the ranges of cooperativity. (2009))

	power (int, optional) – Power of distance (mainly useful in non-parametric mode). Defaults to 0.

	
calculate_crosscorrelation()

	Calculate the cross-correlation. (Read the paper for more details)
:returns: True if successful; None otherwise.

	
calculate_decomposition()

	Decompose the Hessian Matrix of the ANM model.

Note

Eigen values and Eigen Vectors are calculated. use ANM().get_eigenvalues() and ANM().get_eigenvectors() to obtain them.

	
calculate_fluctuations(endmode=None)

	Calculate the Fluctuations of the ANM model.

The fluctualtions/ theoretical b-factors are calculated using this method.

Note

	Fluctuations are calculated. use ANM().get_fluctuations() to obtain the fluctuations.

	Endmode needs to be put in the code if and when required.

	
calculate_kirchhoff(gamma=1.0)

	Calculate the Gaussian Network Model (GNM) kirchhoff Matrix.

The matrix is stored in the self.GNM_MAT variable.

	Returns

	True if successful; None otherwise.

	
get_crosscorrelation()

	Get the crosscorrelations.

Notes

	Make sure that the GNM().calculate_kirchhoff(), GNM().calculate_decomposition() and GNM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	2D array of crosscorrelations

	Return type

	numpy.ndarray

	
get_eigenvalues()

	Get the Eigenvalues obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvalues if successful; None otherwise

	Return type

	numpy.ndarray

	
get_eigenvectors()

	Get the Eigenvectors obtained by decomposing the Hessian Matrix of the ANM model.

Notes

	Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_fluctuations()

	Get the Fluctuations obtained from Eigenvectors and Eigenvalues

Notes

	Make sure that the GNM().calculate_kirchhoff(), GNM().calculate_decomposition() and GNM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	Eigenvectors if successful; None otherwise

	Return type

	numpy.ndarray

	
get_kirchhoff()

	Get the Hessian Matrix of the ANM model.

Notes

	Make sure that the GNM().calculate_kirchhoff() is called before calling this function. (will return None otherwise)

	Returns

	Hessian matrix if successful; None otherwise

	Return type

	numpy.ndarray

	
get_pseudoinverse()

	Get the pseudoinverse of the Kirchhoff’s matrix.

Notes

	Make sure that the GNM().calculate_kirchhoff(), GNM().calculate_decomposition() and GNM().calculate_fluctuations() is called before calling this function. (will return None otherwise)

	Returns

	2D array of pseudoinverse

	Return type

	numpy.ndarray

packman.gnm package

The ‘packman.gnm’ module is a collection of anm methods and applications built on packman.molecule API.

Notes

	Current apps list: - packman.gnm.GNM

	Cite the following paper:

Example

	Review the packman.bin.PACKMAN.py file for the app use.

Submodules

	packman.gnm.gnm module

packman.molecule.annotations module

The various annotation objects host file.

This is file information, not the class information. This information is only for the API developers.
Please read the corrosponding object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Hinge
help(Hinge)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.annotations.Hinge(hid, alpha_value, elements, stats, p)

	Bases: object

This class contains the information about the ‘Hinge’ object (packman.molecule.Hinge).

This class contains all the information available about the Hinge. The Hinge class is the not in the hierarchy of the ‘molecule’ API classes.
However, it resides in the packman.molecule.Chain object because there are unique hinges per chain.
the order of hierarchy of Chain being being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

	Parameters

	
	hid (int) – Unique Hinge ID

	alpha_value (float) – The hinge prediction algorithm parameter (Alpha Value) of the Hinge.

	elements (packman.molecule.Residue) – The elements defining the current hinge (Currently residue objects)

	stats ([float]) – Everything about the statistics (mean/median/mode of B-factors)

	p (float) – p-value obtained from the permutation test (Please read the paper for more details)

	
get_alpha_value()

	Get the hinge prediction algorithm parameter (Alpha Value) of the ‘Hinge’.

	Returns

	float if successful, None otherwise

	
get_elements()

	Get the elements (Currently residue objects) of the ‘Hinge’

	Returns

	list of elements (Currently residue objects) if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Hinge’

	Returns

	int if successful, None otherwise.

	
get_pvalue()

	Get the statistics of the ‘Hinge’

	Returns

	p-value obtained from the permutation test (Please read the paper for more details)

	Return type

	p-value (float)

	
get_stats()

	Get the statistics of the ‘Hinge’

	Returns

	Statistics of the Hinge such as mean/median/mode of B-factors if successful, None otherwise.

packman.molecule.atom module

The ‘Atom’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Atom’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Atom
help(Atom)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.atom.Atom(id, AtomName, Coordinates, Occupancy, bfactor, Element, Charge, parent)

	Bases: object

This class contains the information about the ‘Atom’ object (packman.molecule.Atom).

This class contains all the information available about the Atom. The Atom class is the lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Most essential class of all as it stores the actual data of the atoms.

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Atom ID from the PDB file as it is. Each Atom in a PDB file Model/Frame has unique ID. (essential)

	AtomName (str) – Atom Name from the PDB file as it is.

	Coordinates (numpy.array) – The 3*1 array of coordinates/location of the atoms. (essential)

	Occupancy (float) – The value of the occupancy.

	bfactor (float) – The B-factor/Temperature Factor/ Debye Waller Factor of the atom. (For NMR structures, it is RMSF accross the frames)

	Element (str) – Element information of the given ‘Atom’ object. (Element from the Periodic Table)

	Charge (float) – Charnge of the given ‘Atom’ object.

	parent (packman.molecule.Residue) – The Residue Object (parent) this atom belongs to.

	AlternateLocationIndicator (bool) – If the alternate location available for the atom (To be removed in future)

	
calculate_distance(another_atom)

	Calculate the Distance between the given ‘Atom’ and another ‘Atom’

	Parameters

	another_atom (packman.molecule.atom.Atom) – The ‘Atom’ User wishes to calculate distance from.

	Returns

	float if successful, None otherwise.

	
get_alternatelocationindicator()

	Know if the given ‘Atom’ has Alternate Location Information

Note

This feature might be removed in the future.

	Returns

	True if successful, False otherwise.

	
get_bfactor()

	Get the B-factor/Temperature Factor/ Debye Waller Factor of the given ‘Atom’

	Returns

	float if successful, None otherwise.

	
get_bond(atom2)

	Get the specific bond with the specific atom.

	Parameters

	atom2 (packman.molecule.Atom/ int) – ‘Atom’ object or the atom id.

	Returns

	Bond (packman.molecule.Bond) if successful, None if bond does not exist.

	
get_bonds()

	Get the bonds for the given ‘Atom’

	Returns

	list of packman.molecule.Bond if successful; [] otherwise.

	
get_charge()

	Get the Charge of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_domain_id()

	Get the Domain Identifier of the given ‘Atom’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_element()

	Get the Element of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Atom’

	Returns

	int if successful, None otherwise.

	
get_location()

	Get the Coordinates/Location of the given ‘Atom’

	Returns

	numpy.array if successful, None otherwise.

	
get_name()

	Get the Name of the ‘Atom’

	Returns

	str if successful, None otherwise.

	
get_occupancy()

	Get the Occupancy of the given ‘Atom’

	Returns

	float if successful, None otherwise.

	
get_parent()

	Get the ‘Residue’ the given ‘Atom’ belongs to.

	Returns

	packman.molecule.Residue if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Atom’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_segmentidentifier()

	Get the Segment Identifier of the given ‘Atom’

	Returns

	str if successful, None otherwise.

	
set_alternatelocationindicator(new_alternatelocationindicator)

	Set the Alternate Location Indicator of the given ‘Atom’

	Parameters

	new_alternatelocationindicator – The Alternate Location Indicator User wishes to assign to the given ‘Atom’

	
set_bfactor(new_bfactor)

	Set the B-factor/Temperature Factor/ Debye Waller Factor of the given ‘Atom’

	Parameters

	new_bfactor (float) – The B-factor/Temperature Factor/ Debye Waller Factor User wishes to assign to the given ‘Atom’

	
set_bond(new_bond)

	Set the atom to the given ‘Atom’

	Parameters

	new_bond (packman.molecule.Bond) – Add new bond to the given ‘Atom’

Note

	Yet to add the functionality to delete the specific bonds.

	
set_charge(new_charge)

	Set the Charge of the given ‘Atom’

	Parameters

	new_charge (str) – The Charge User wishes to assign to the given ‘Atom’

	
set_elment(new_element)

	Set the Element of the given ‘Atom’

	Parameters

	new_element (str) – The Element User wishes to assign to the given ‘Atom’

	
set_id(new_id)

	Set the ID of the given ‘Atom’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Atom’

	
set_location(new_location)

	Set the Coordinates/Location of the given ‘Atom’

	Parameters

	new_location (numpy.array) – The Coordinates/Location User wishes to assign to the given ‘Atom’

	
set_name(new_name)

	Set the Name of the given ‘Atom’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘Atom’

	
set_occupancy(new_occupancy)

	Set the Occupancy of the given ‘Atom’

	Parameters

	new_occupancy – The Occupancy User wishes to assign to the given ‘Atom’

	
set_parent(new_parent)

	Set the Parent ‘Residue’ of the given ‘Atom’

	Parameters

	new_parent (packman.molecule.residue.Residue) – The parent ‘Residue’ User wishes to assign to the given ‘Atom’

	
set_property(property_name, value)

	Set the Property of the given ‘Atom’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
set_segmentidentifier(new_segmentidentifier)

	Set the Segment Identifier of the given ‘Atom’

	Parameters

	new_segmentidentifier (str) – The Segment Identifier User wishes to assign to the given ‘Atom’

packman.molecule.bond module

The ‘Bond’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Bond’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Bond
help(Bond)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.bond.Bond(id, atom1, atom2, type, source=None)

	Bases: object

This class contains the information about the ‘Bond’ object (packman.molecule.Bond).

This class contains all the information available about the Bond. The Bond class is the connection between the lowest in the hierarchy of the ‘molecule’ API classes (Atom).
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Since this is an object file, user is allowed to bond any two atoms in the structure. However, it is recommended to use caution and stick to the conventions when bonding two atoms.

	
	The bonds that are not in the CONNECT records of the structure file are calculated using the following algorithm:

	Zhang, Q., Zhang, W., Li, Y. et al. A rule-based algorithm for automatic bond type perception. J Cheminform 4, 26 (2012). https://doi.org/10.1186/1758-2946-4-26

	Parameters

	
	id (int) – ID of the bond.

	atom1 (packman.molecule.Atom) – The first atom connected by the bond. (order is not important)

	atom2 (packman.molecule.Atom) – The second atom connected by the bond. (order is not important)

	source (str) – Source of information for the given bond.

	type (str) – Bond can be either of the following type: (covalent, ionic, hydrogen or other)

	electrons (tuple) – A python tuple containing information about shared electrons (eg…. (1,1) means the electrons shared between a single hydrocarbon bond if the atom1 is carbon and atom2 is hydrogen touple order here is (atom1, atom2).

	
get_atoms()

	Get the atoms involved in the bond.

	Returns

	(atom1, atom2) if successful; None otherwise

	
get_id()

	Get the ID of the ‘Bond’

	Returns

	ID of the bond.

	Return type

	id (int)

	
get_property(property_name)

	Get the Property of the given ‘Bond’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_source()

	Get the source of the information of the created bond.

	Returns

	Source of information for the given bond.

	Return type

	source (str)

	
get_torsion(neighbor1=None, neighbor2=None, radians=True)

	Calculate the torsion angle of the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that can measure the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Return value of the angle in radians (returns value in degrees if False; Default : True)

	Returns

	The torsion angle in radians/degrees if sucessful, None otherwise.

	
get_type()

	Get the type of the bond

	Returns

	type of the bond (str) if successful; None otherwise

	
set_atoms(new_pair)

	Set the atoms involved in the bond.

	Parameters

	atom_pair (tuple) – Tuple of packman.molecule.Atom objects.

	
set_property(property_name, value)

	Set the Property of the given ‘Bond’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
set_torsion(theta, neighbor1=None, neighbor2=None, radians=True)

	Set the torsion for the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that change the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	theta (int) – Set the torsional angle (see the ‘radians’ parameter description)

	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Parameter ‘theta’ will be assuned to be in Radians if True, Degrees will be assumed when False. (Default : True)

	Returns

	True if successful, None otherwise

	
set_type(new_type)

	Set the bond type.

Bond can be either of the following type: (covalent, ionic, hydrogen or other)

	Parameters

	new_type (str) –

packman.molecule.chain module

The ‘Chain’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Chain’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Chain
help(Chain)

Note

	Iterating over chain only fetches the residues not the hetero atoms

	The object fetches the atoms and residues which are not in order as they appear in the PDB. Find a way to fix this

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.chain.Chain(id)

	Bases: object

This class contains the information about the ‘Chain’ object (packman.molecule.Chain).

This class contains all the information available about the Chain and stores the corresponding ‘Residue’ and ‘Hetmol’ objects in itself. The Chain class is the third lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Add get_atoms()

	Parameters

	id (str) – Chain ID from the PDB file as it is. Each Chain in a PDB file Model/Frame has unique ID. (essential)

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
get_atom(idx)

	Get the atom of the given ID.

	Note: - This function is different from packman.molecule.chain.get_atoms() and also packman.molecule.residue.get_atom()

	
	If the PDB file is constructed manually/ has multiple atoms of the same ID, the first instance of the atom with that id is returned. Please avoid saving two atoms with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get atom by the id

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘atom’ objects of the residues of the ‘Chain’

	Returns

	generator of ‘atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Chain’ as a list of ‘Atom’ object

Note

	Backbone Atoms: CA, O, N, C

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_bonds()

	Get the Bonds in the given ‘Chain’

Please check out calculate_bonds() for more information on the bond calculations.

	
get_calpha()

	Get the C-Alpha atoms of the ‘Chain’ as an ‘Atom’ object.

	Returns

	generator of packman.molecule.Atom objects if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Chain’.

Please note that if the Entropy is calculated using specific atoms, this option might not give results for the amino acids that are not included because of the specific selection. Use the get_total_chain_entropy() function. Please see the documentation for more details.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_hetatoms()

	Get the generator of corresponding ‘atom’ objects of the hetmols of the ‘Chain’

	Returns

	generator of ‘atom’ objects if successful, None otherwise.

	
get_hetmol(idx)

	Get the hetmol of the given ID.

	Note: - This function is different from packman.molecule.chain.get_hetmols()

	
	If the PDB file is constructed manually/ has multiple hetmol of the same ID, the first instance of the hetmol with that id is returned. Please avoid saving two hetmol with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get hetmol by the id

	Returns

	HetMol of the given ID if successful; None otherwise.

	Return type

	residue (packman.molecule.HetMol)

	
get_hetmols()

	Get the generator of corresponding ‘HetMol’ objects of the ‘Chain’

	Returns

	generator of ‘HetAtom’ objects if successful, None otherwise.

	
get_hinges()

	Get the hinges in the chain as a dictionary of ‘Hinge’ objects.

	Returns

	packman.molecule.annotations.Hinge if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Residue’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the ‘Model’ the given ‘Chain’ belongs to.

	Returns

	packman.molecule.Model if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_residue(idx)

	Get the residue of the given ID.

	Note: - This function is different from packman.molecule.chain.get_residues()

	
	If the PDB file is constructed manually/ has multiple residues of the same ID, the first instance of the residue with that id is returned. Please avoid saving two residues with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get residue by the id

	Returns

	Residue of the given ID if successful; None otherwise.

	Return type

	residue (packman.molecule.Residue)

	
get_residues()

	Get the generator of corresponding ‘Residue’ objects of the ‘Chain’

	Returns

	generator of ‘Residue’ objects if successful, None otherwise.

	
get_sequence()

	Get the Amino acid sequence of the chain. (Protein chains only)

	Returns

	FASTA format string of the chain sequence.

	
set_hinges(new_hinges)

	Set/Add hinge to the ‘Chain’ object

	Parameters

	new_hinges (packman.molecule.annotations.Hinge) – The ‘Hinge’ User wishes to assign/add to the given ‘Chain’

	
set_id(new_id)

	Set the ID of the given ‘Chain’

	Parameters

	new_id (str) – The ID User wishes to assign to the given ‘Chain’

	
set_parent(parent)

	Set the Parent of the given ‘Residue’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘Residue’

	
set_property(property_name, value)

	Set the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule.hetmol module

The ‘HetMol’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘HetMol’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import HetMol
help(HetMol)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.hetmol.HetMol(id, name, parent)

	Bases: object

This class contains the information about the ‘HetMol’ object (packman.molecule.Residue).

This class contains all the information available about the HetMol and stores the corresponding ‘Atom’ objects in itself. The Residue class is the second lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> HetMol> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Residue ID from the PDB file as it is. Each Residue in a PDB file Model/Frame has unique ID. (essential)

	name (str) – Residue Name from the PDB file as it is.

	parent (packman.molecule.Chain) – The Chain Object (parent) this Residue belongs to.

	
get_atom(key)

	Get the specific Atom by id/name. Please note that this is different than get_atoms()

	Parameters

	key (int/str) – Get atom by the id/name

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘HetMol’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_centerofgravity()

	Get the center of gravity of the given ‘HetMol’

Note

Yet to add the atomic masses.

	Returns

	Cartesian Coordinates as numpy.array of the centre of the gravity.

	
get_domain_id()

	Get the Domain Identifier of the given ‘HetMol’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_id()

	Get the ID of the ‘HetMol’

	Returns

	int if successful, None otherwise.

	
get_name()

	Get the Name of the ‘HetMol’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the Parent of the ‘HetMol’

	Returns

	packman.molecule.Chain if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘HetMol’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
set_domain_id(new_domain_id)

	Set the Domain Identifier of the given ‘HetMol’.

Note

Domain Identifiers Format:
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Parameters

	new_domain_id (str) – The Domain Identifies User wishes to assign to the given ‘HetMol’

	
set_id(new_id)

	Set the ID of the given ‘HetMol’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘HetMol’

	
set_name(new_name)

	Set the Name of the given ‘HetMol’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘HetMol’

	
set_parent(new_parent)

	Set the Parent of the given ‘HetMol’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘HetMol’

	
set_property(property_name, value)

	Set the Property of the given ‘HetMol’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule.model module

The ‘Model’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Model’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Model
help(Model)

Note

	The models are nothing but frames of the PDB file.

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.model.Model(id, AllAtoms, AllResidues, AllChains, AllHetAtoms, AllHetMols)

	Bases: object

This class contains the information about the ‘Chain’ object (packman.molecule.Chain).

This class contains all the information available about the Chain and stores the corresponding ‘Residue’ and ‘Hetmol’ objects in itself. The Chain class is the third lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Notes

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Model ID from the PDB file ordered from first to the last. Each Model in a PDB file has unique ID. (essential)

	AllAtoms ({packman.molecule.Atom}) – Dictionary of all the ‘Atom’ in the given model.

	AllResidues ({packman.molecule.Residue}) – Dictionary of all the ‘Residue’ in the given model.

	AllChains ({packman.molecule.Chain}) – Dictionary of all the ‘Chain’ in the given model.

	AllHetAtoms ({packman.molecule.HetAtom}) – Dictionary of all the ‘HetAtom’ in the given model.

	AllHetMols ({packman.molecule.HetMol}) – Dictionary of all the ‘HetMol’ in the given model.

	
calculate_bonds()

	Calculate the bonds in the given ‘Model’.

Currently, bonds are only calculated based on the following RCSB PDB resource file:
http://ftp.wwpdb.org/pub/pdb/data/monomers/aa-variants-v1.cif.gz

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
check_clashes(distance=0.77)

	Check if any atoms are too close to each other. This is important since too close atoms in the elastic network models can be very bad for the results.

Notes

	This function will be moved to the molecule manipulation package later

	Parameters

	distance (float) – The distance cutoff user wishes to defined as a clash radius (default:0.77; max bond length)

	Returns

	Number of clashes present according to the set cutoff.

	Return type

	clashes (int)

	
get_atom(idx)

	Get the atom of the given ID.

	Note: - This function is different from packman.molecule.chain.get_atoms() and also packman.molecule.residue.get_atom()

	
	If the PDB file is constructed manually/ has multiple atoms of the same ID, the first instance of the atom with that id is returned. Please avoid saving two atoms with same ID in a same structure file in a given frame/model.

	Parameters

	idx (int) – Get atom by the id

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atom_byid(query_atom_id)

	Get the ‘Atom’ with corresponding ‘Atom’ ID

	Returns

	‘packman.molecule.Atom’ object if successful, None otherwise.

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘Model’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Model’ as a list of ‘Atom’ object

Note

	Backbone Atoms: CA, O, N, C

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_bond(idx)

	Return the specific bond with specific ID.

	Parameters

	idx (int) – Get the ‘Bond’ by the id

	Returns

	packman.molecule.Bond object if successful, None otherwise.

	
get_bonds()

	Return all the bonds in the given ‘Model’.

	Returns

	generator of packman.molecule.Bond objects if successful, None otherwise.

	
get_calpha()

	Get the C-Alpha atom of the ‘Model’ as an ‘Atom’ object.

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_chain(ChainID)

	Get the corresponding ‘Chain’ object

	Returns

	‘Chain’ object if successful, None otherwise.

	
get_chains()

	Get the list of corresponding ‘Chain’ objects of the ‘Model’

	Returns

	[packman.molecule.Chain] if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Chain’.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_hetatoms()

	Get the generator of corresponding ‘HetAtom’ objects of the ‘Model’

	Returns

	generator of ‘packman.molecule.HetAtom’ objects if successful, None otherwise.

	
get_hetmols()

	Get the generator of corresponding ‘HetMol’ objects of the ‘Model’

	Returns

	generator of ‘packman.molecule.HetMol’ objects if successful, None otherwise.

	
get_id()

	Get the ID of the ‘Model’

	Returns

	int if successful, None otherwise.

	
get_parent()

	Get the ‘Protein’ parent of the ‘Model’ object.

	Returns

	‘packman.molecule.Protein’ object if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Chain’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular chain becomes disordered, it can be annotated with this feature.

	
get_residues()

	Get the generator of corresponding ‘Residue’ objects of the ‘Model’

	Returns

	array of ‘Residue’ objects if successful, None otherwise.

	
get_sequence()

	Get the Amino acid sequence of the chain. (Protein chains only)

	Returns

	FASTA format string of the chain sequence.

	
get_torsion(bond, neighbor1=None, neighbor2=None, radians=True)

	Calculate the torsion angle of the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that can measure the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	bond (packman.molecule.Bond) – The bond user wishes to calculate torsion angle to.

	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Return value of the angle in radians (returns value in degrees if False; Default : True)

	Returns

	The torsion angle in radians/degrees if sucessful, None otherwise.

	
set_id(new_id)

	Set the ID of the given ‘Model’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Model’

	
set_parent(new_parent)

	Set the ‘Protein’ object as a parent to the ‘Model’ object.

	Parameters

	new_parent (packman.molecule.Protein) – The ‘Protein’ object as a parent to the given ‘Model’

	
set_property(property_name, value)

	Set the Property of the given ‘Model’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
set_torsion(bond, theta, neighbor1=None, neighbor2=None, radians=True)

	Set the torsion for the given covalent bond with the corresponding selected neighbors.

Note

At least four atoms are needed to form two planes that change the torsional angles; therefore, along with the two bond atoms, the user needs to provide the additional two atoms that are ideally non-mutual neighbors of the atoms in the bond.

	Parameters

	
	bond (packman.molecule.Bond) – The bond user wishes to rotate.

	theta (int) – Set the torsional angle (see the ‘radians’ parameter description)

	neighbor1 (int/packman.molecule.Atom) – Neighbour of the Atom1 as an ‘Atom’ object or Atom ID.

	neighbor1 – Neighbour of the Atom2 as an ‘Atom’ object or Atom ID.

	radians (True/False) – Parameter ‘theta’ will be assuned to be in Radians if True, Degrees will be assumed when False. (Default : True)

	Returns

	True if successfulm None otherwise

packman.molecule.molecule module

The ‘Molecule’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Model’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Model
help(Model)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
packman.molecule.molecule.download_structure(pdbid, save_name=None, ftype='cif')

	This class helps user to download the 3D structure of the protein and save it on a disk.

Example:

from packman import molecule
molecule.download_structure('1prw')

	Parameters

	
	pdbid (str) – A Unique 4 Letter PDB ID (eg.. 1PRW)

	save_name (str) – Save name of the downloaded file (extension will be added automatically depending on the ftype argument).

	ftype (str) – Format name (‘.cif’ or ‘.pdb’)

	
packman.molecule.molecule.load_cif(filename)

	Load the CIF (.cif) file into the ‘Protein’ Object.

	Links::

	
	https://www.rcsb.org/docs/general-help/identifiers-in-pdb

	
packman.molecule.molecule.load_pdb(filename)

	Load the PDB (.pdb) file into the ‘Protein’ Object.

	
packman.molecule.molecule.load_structure(filename, ftype='cif')

	Load a Molecule from a file.

This class helps user to load the 3D structure of the protein onto a packman.molecule.Protein object.

Example:

from packman import molecule
molecule.download_structure('1prw')
molecule.load_structure('1prw.cif')

	Parameters

	
	filename (str) – Name of the input file

	ftype (str) – Format name (‘cif’ or ‘pdb’); Default: cif

	Returns

	Protein object containing all the information about the Protein

	Return type

	packman.molecule.Protein

packman.molecule.protein module

The ‘Protein’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Protein’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Protein
help(Protein)

Note

	Top in the hierarchy

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.protein.Protein(id, Models)

	Bases: object

This class contains the information about the ‘Protein’ object (packman.molecule.Protein).

This class contains all the information available about the Protein and stores everything in itself. The Protein class is the highest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Protein ID

	name (str) – Protein Name

	Models ([packman.molecule.Model]) – Protein models/frames of the structure. (NMR files usually have multiple conformers of the same protein)

	
get_data()

	Get the misc data (other than coordinates) from the file.

	Returns

	Array of Strings

	
get_id()

	Get the ID for the Protein object.

	Returns

	String if successful, None otherwise.

	
get_models()

	Get all the models at once. Useful for the iterations.

	Returns

	Generator of all the models in the PDB file.

	
get_sequence(all_models=False)

	summary

	Parameters

	all_models (bool, optional) – Get sequence of the all frames; useless if sequence accross the models is identical. Defaults to False.

	Returns

	Protein sequence in FASTA format.

	
set_data(data)

	Set the misc data (other than coordiantes) to the Protein object.

	Parameters

	data (array) – Array of String

Note

	All the properties are planned to be put in specific format to achieve complete interformat conversion.

	
write_cif(filename)

	Write a PDBx/mmCIF (.cif) file from the Protein object.

	Parameters

	filename (str) – Name of the output file user wishes to assign.

	
write_pdb(filename)

	Write a PDB (.pdb) file from the Protein object.

	Parameters

	filename (str) – Name of the output file user wishes to assign.

	
write_structure(filename, ftype='cif')

	Write the ‘Protein’ object to the file.

	CIF file format is default because it has more advantages over PDB format and PDB format is ‘frozen’. Please read following for more information::

	https://www.wwpdb.org/documentation/file-formats-and-the-pdb

	Parameters

	
	filename (str) – Name of the output file user wishes to assign.

	ftype (str) – Format for the file (pdb / cif)

packman.molecule.residue module

The ‘Residue’ object host file.

This is file information, not the class information. This information is only for the API developers.
Please read the ‘Residue’ object documentation for details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Example:

from packman.molecule import Residue
help(Residue)

	Authors:

	
	Pranav Khade(https://github.com/Pranavkhade)

	
class packman.molecule.residue.Residue(id, name, parent)

	Bases: object

This class contains the information about the ‘Residue’ object (packman.molecule.Residue).

This class contains all the information available about the Residue and stores the corresponding ‘Atom’ objects in itself. The Residue class is the second lowest in the hierarchy of the ‘molecule’ API classes.
the order of hierarchy being: Protein> Model> Chain> Residue> Atom. This class is also the component of the ‘molecule’ module API.
Please read the Tutorials and Documentation for more details.

Note

	Please refer to the [https://web.archive.org/web/20080905024351/http://www.wwpdb.org/docs.html] for the description of the arguments.

	Parameters

	
	id (int) – Residue ID from the PDB file as it is. Each Residue in a PDB file Model/Frame has unique ID. (essential)

	name (str) – Residue Name from the PDB file as it is.

	parent (packman.molecule.Chain) – The Chain Object (parent) this Residue belongs to.

	
calculate_entropy(entropy_type, chains=None, probe_size=1.4, onspherepoints=30)

	Calculate the entropy for the each amino acid will be returned.

The ‘chains’ argument should be used when the user wants to restrict the analysis to a chain or group of chains rather than the whole structure.

	Parameters

	
	entropy_type (str) – Type of entropy to be calculated (Options: PackingEntropy)

	chains ([str]/str) – Chain IDs for the Entropy calculation (None means all the chains are included; single string means only one chain ID; multiple chains should be an array of strings).

	probe_size (float) – Radius of the probe to generate the surface points (This value should not be less than 1;Read the Publication for more details)

	onspherepoints (int) – Number of points to be generated around each point for the surface (Read the Publication for more details)

	
get_atom(key)

	Get the specific Atom by id/name. Please note that this is different than get_atoms()

	Parameters

	key (int/str) – Get atom by the id/name

	Returns

	Atom of the given ID if successful; None otherwise.

	Return type

	atom (packman.molecule.Atom)

	
get_atoms()

	Get the generator of corresponding ‘Atom’ objects of the ‘Residue’

	Returns

	generator of ‘Atom’ objects if successful, None otherwise.

	
get_backbone()

	Get the Backbone atoms of the given ‘Residue’ as a list of ‘Atom’ object

Note

Some files like 1k20 are showing multiple backbone atoms because seperation of models is based on [Model] in this tool (Maybe Solved)

	Returns

	list of packman.molecule.Atom if successful, None otherwise.

	
get_calpha()

	Get the C-Alpha atom of the residue as an ‘Atom’ object.

	Returns

	packman.molecule.Atom if successful, None otherwise.

	
get_centerofgravity()

	Get the center of gravity of the given ‘Residue’

Note

Yet to add the atomic masses.

	Returns

	Cartesian Coordinates as numpy.array of the centre of the gravity.

	
get_changed_alphabet()

	Converts three letter amino acid code to one letter and vise-versa

	Returns

	Three or one letter amino acid code depending and opposite of the argument provided.

	Return type

	AA (string)

	
get_domain_id()

	Get the Domain Identifier of the given ‘Residue’. Hinge Prediction is Necessary for this option.

Note

Domain Identifiers (Obtained after running PACKMAN):
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Returns

	str if successful, None otherwise.

	
get_entropy(entropy_type)

	Get the Packing Entropy of the given ‘Residue’.

Please note that if the Entropy is calculated using specific atoms, this option might not give results for the amino acids that are not included because of the specific selection. Please see the documentation for more details.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
get_id()

	Get the ID of the ‘Residue’

	Returns

	int if successful, None otherwise.

	
get_name()

	Get the Name of the ‘Residue’

	Returns

	str if successful, None otherwise.

	
get_parent()

	Get the Parent of the ‘Residue’

	Returns

	packman.molecule.Chain if successful, None otherwise.

	
get_property(property_name)

	Get the Property of the given ‘Residue’.

Property is any key and value combination that can be assigned to this object. This (along with the set_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

	
get_tip()

	Get the tip atom of the given ‘Residue’ as an ‘Atom’ object

Note

ALA and GLY are small so their tip is C-alpha

	Returns

	packman.molecule.Atom if successful, None otherwise.

	
set_domain_id(new_domain_id)

	Set the Domain Identifier of the given ‘Residue’.

Note

Domain Identifiers Format:
‘FL’: Flexible Linkers (Hinges); Followed by the domain number
‘DM’: Domain; Followed by the domain number

	Parameters

	new_domain_id (str) – The Domain Identifies User wishes to assign to the given ‘Residue’

	
set_entropy(entropy_type, value)

	Set the Packing Entropy of the given ‘Residue’.

	Parameters

	type (str) – Type of entropy (Allowed Values: 1. PackingEntropy)

Note

	More type of Entropies might be added in the future.

	
set_id(new_id)

	Set the ID of the given ‘Residue’

	Parameters

	new_id (int) – The ID User wishes to assign to the given ‘Residue’

	
set_name(new_name)

	Set the Name of the given ‘Residue’

	Parameters

	new_name (str) – The Name User wishes to assign to the given ‘Residue’

	
set_parent(new_parent)

	Set the Parent of the given ‘Residue’

	Parameters

	new_parent (packman.molecule.Chain) – The parent ‘Chain’ User wishes to assign to the given ‘Residue’

	
set_property(property_name, value)

	Set the Property of the given ‘Residue’.

Property is any key and value combination that can be assigned to this object. This (along with the get_property) feature is mainly useful for the user customization.
Properties are like pinboards. You can pin anything to the object with a key as a pin.

	Parameters

	
	property_name (object) – The ‘Key’ or a name the user wants to assign to to the property

	value (object) – The value the user wants to assign to the property

Note

	Users can add custom annotations; for example: If particular amino acid becomes disordered, it can be annotated with this feature.

packman.molecule package

The ‘packman.molecule’ module is used to read, write, manipulate and analyze the molecule.

This module is the base of the tool packman. It is used as a base module for all the packman utilities
such as HingePrediction, Compliance and Right Domain ANM. The molecule module can also be an API to utilize the objects such
as Atom, Residue, Chain, Model and Protein. Please read the documentation and tutorials for more details.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

Notes

	Tutorial link: https://py-packman.readthedocs.io/en/latest/tutorials/molecule.html#tutorials-molecule

Example

	To Load the molecule::

	from packman import molecule
molecule.download_structure(‘1prw’,’1prw.pdb’)
mol = molecule.load_structure(‘1prw.pdb’)

Submodules

	packman.molecule.annotations module

	packman.molecule.atom module

	packman.molecule.bond module

	packman.molecule.chain module

	packman.molecule.hetmol module

	packman.molecule.model module

	packman.molecule.molecule module

	packman.molecule.protein module

	packman.molecule.residue module

packman.tests.anm.test_anm module

	
class packman.tests.anm.test_anm.TestMolecule(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_ANM_Compliance()

	

	
test_hdANM()

	

packman.tests.anm package

Submodules

	packman.tests.anm.test_anm module

packman.tests.data package

packman.tests.dci.test_dci module

packman.tests.dci package

Submodules

	packman.tests.dci.test_dci module

packman.tests.entropy.test_entropy module

	
class packman.tests.entropy.test_entropy.TestMolecule(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_PackingEntropy()

	

packman.tests.entropy package

Submodules

	packman.tests.entropy.test_entropy module

packman.tests.geometry.test_geometry module

packman.tests.geometry package

Submodules

	packman.tests.geometry.test_geometry module

packman.tests.gnm.test_gnm module

packman.tests.gnm package

Submodules

	packman.tests.gnm.test_gnm module

packman.tests.molecule.test_molecule module

	
class packman.tests.molecule.test_molecule.TestMolecule(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_Atom()

	

	
test_Bond()

	

	
test_Chain()

	

	
test_Model()

	

	
test_Protein()

	

	
test_Residue()

	

	
test_load_cif()

	

	
test_load_pdb()

	

packman.tests.molecule package

Submodules

	packman.tests.molecule.test_molecule module

packman.tests package

Subpackages

	packman.tests.anm package
	Submodules
	packman.tests.anm.test_anm module

	packman.tests.data package

	packman.tests.dci package
	Submodules
	packman.tests.dci.test_dci module

	packman.tests.entropy package
	Submodules
	packman.tests.entropy.test_entropy module

	packman.tests.geometry package
	Submodules
	packman.tests.geometry.test_geometry module

	packman.tests.gnm package
	Submodules
	packman.tests.gnm.test_gnm module

	packman.tests.molecule package
	Submodules
	packman.tests.molecule.test_molecule module

packman.utilities.utilities module

This class contains all the utilities that are neccessary for carriying out structural superimposition, sequence matching etc.

	
packman.utilities.utilities.RMSD(group1, group2, use='calpha', ids=[])

	

	
packman.utilities.utilities.WriteOBJ(atoms, faces, fh)

	Write the .obj file to visualize the obtain alpha shape tesselations.

	Parameters

	
	atoms (packman.molecule.Atom) – Atoms (Just for the node records)

	faces ([float]) – SelectedTesselations (See the packman.apps.predict_hinge)

	fh (file) – Output file with .obj extension

	
packman.utilities.utilities.change_alphabet(AA)

	Converts three letter amino acid code to one letter and vise-versa

	Parameters

	AA (string) – Three or one letter amino acid code.

	Returns

	Three or one letter amino acid code depending and opposite of the argument provided.

	Return type

	AA (string)

	
packman.utilities.utilities.load_hinge(filename)

	Load the hinge information neccessary for the hd-ANM and other methods.

About .hng File:
- hdANM requires the information about hinges and domains in the .hng format.
- Each column in the .hng file is TAB delimited.
- Each row in the .hng file follows collowing pattern:

Filename_ChainID Domain/HingeId ResidueStartPosition:ResidueEndPosition

Example of .hng file for PDBID 1EXR:

1EXR_A D1 1:70
1EXR_A H1 70:90
1EXR_A D2 90:148

Above format means that there are two domains (D1 and D2) separated by a hinge (H1). D1 stretches from residue 1 to 70; D2 stretches from 90 to 148 and hinge H1 is in the middle.

	Parameters

	filename (string) – filepath and name of the .hng file

	Returns

	residue based hinge and domain information.

	Return type

	HNGinfo (dictionary)

	
packman.utilities.utilities.superimporse(reference, target, use='calpha', ids=[], change_target=True)

	This function is used to superimpose the Target Chain(coordinates will be changed) on the Reference Chain(coordinates will change).

The superimposition currently is done on the basis of matching Residue ID. If both the proteins have unequal amount of residues,
still their matching residues will be used for the superimposition.

It is important to note that sometimes proteins (although same type and chain) have different numbering scheme.
In such case, the superimposition will not be carried out. Change the IDs of the taget/reference in such a way that it will match each other.

For more information about how to change ID of the residue, read : packman.molecule.Residue class

	Parameters

	
	reference (packman.molecule.Chain) – Chain whose coordinates will remain same and will be used as a reference.

	target (packman.molecule.Chain) – Chain whose coordinates will be changed according to the reference chain.

	use (str) – Which atoms to be used for superimposition (Options: calpha, backbone)

	ids (list) – Use only particular residues to align (Provide IDs) eg… ids=[1,2,5,77] will use only 1,2,5 and 77th residues to align two chains

	change_target (bool) – Change the coordinates of the target chain based on the reference

	Returns

	Rotation matrix for Target Chain w.r.t Reference Chain.
t (numpy.array): Translation vector for Target Chain w.r.t Reference Chain.

	Return type

	R (numpy.matrix)

packman.utilities package

Submodules

	packman.utilities.utilities module

packman package

The py-PACKMAN is a collection of subpackages built on the packman.molecule API.

Please check the corresponding packages and tutorials for more information about the package use.

Subpackages

	packman.anm package
	Submodules
	packman.anm.anm module

	packman.anm.hd_anm module

	packman.apps package
	Submodules
	packman.apps.calculate_entropy module

	packman.apps.dci module

	packman.apps.hdanm module

	packman.apps.predict_hinge module

	packman.bin package
	Submodules
	packman.bin.GUI module

	packman.bin.PACKMAN module

	packman.constants package
	Submodules
	packman.constants.Constants module

	packman.entropy package
	Submodules
	packman.entropy.entropy module

	packman.geometry package
	Submodules
	packman.geometry.geometry module

	packman.gnm package
	Submodules
	packman.gnm.gnm module

	packman.molecule package
	Submodules
	packman.molecule.annotations module

	packman.molecule.atom module

	packman.molecule.bond module

	packman.molecule.chain module

	packman.molecule.hetmol module

	packman.molecule.model module

	packman.molecule.molecule module

	packman.molecule.protein module

	packman.molecule.residue module

	packman.tests package
	Subpackages
	packman.tests.anm package
	Submodules
	packman.tests.anm.test_anm module

	packman.tests.data package

	packman.tests.dci package
	Submodules
	packman.tests.dci.test_dci module

	packman.tests.entropy package
	Submodules
	packman.tests.entropy.test_entropy module

	packman.tests.geometry package
	Submodules
	packman.tests.geometry.test_geometry module

	packman.tests.gnm package
	Submodules
	packman.tests.gnm.test_gnm module

	packman.tests.molecule package
	Submodules
	packman.tests.molecule.test_molecule module

	packman.utilities package
	Submodules
	packman.utilities.utilities module

Using Gaussian Network Model (GNM)

This tutorial aims to get the user to familiarize with the concept of GNM API. GNM is available only in API.

How to cite:

- For original GNM: Tirion, M.M. (1996). "Large amplitude elastic motions in proteins from a single-parameter, atomic analysis". Phys. Rev. Lett. 77 (9): 1905-1908.
- For using GNM with this package: Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007
- For 7.8 Angstrom cutoff: Yang, L., Song, G. & Jernigan, R. L. Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci U S A 106, 12347-52 (2009).

Note: If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN

Step 1: Loading Structure

In this section, we load the file containing the molecular structure. To understand in dept about the packman.molecule object, pelase visit Using ‘Molecule’ to load and manupulate molecular structures. (Basics)

Code Example:

from packman import molecule

#File loading
mol = molecule.load_structure('1prw.cif')
#OR
#mol = molecule.load_structure('1prw.pdb')

#If the c-alpha atoms of the ALL the chains need to be studied,
#calpha = [i for i in mol[0].get_calpha() if i is not None]

#If the c-alpha atoms of the specific chain 'A' needs to be studied,
calpha = [i for i in mol[0]['A'].get_calpha() if i is not None]

Step 2: Loading the GNM

The GNM object has one required argument (set of atoms) and several optional arguments that can be changed according to the user’s needs. Please check packman.gnm.GNM for more details.

Code Example:

from packman.gnm import GNM
model = GNM(calpha)

Step 3: Calculating Kirchhoff’s Matrix

Please refer to the publication mentioned at the top of this page for more details.

In future, we will allow users to provide amino acid residue specific molecular masses, atom specific atomic masses, or any other type of weights that needs to be assigned to the atoms/residues. To give custom residue-specific values as mass to the method, simply create a standard python dictionary with 20 standard amino acids as keys and assign corresponding values to it (mass_type parameter).

Code Example:

model.calculate_kirchhoff()
kirchhoff = model.get_kirchhoff()
print(kirchhoff)

Step 4: Eigenvalue decomposition

The Eigenvalue decomposition is carried out using the Kirchhoff’s matrix and mass matrix to calculate eigenvalues and eigenvectors.

Code Example:

model.calculate_decomposition()

Eigenvalues and Eigenvectors. can be obtained by:

model.get_eigenvalues()
model.get_eigenvectors()

Respectively. Other calculated attributes and properties of the hd-ANM built can be obtained by its ‘get’ methods. Please refer to packman.gnm.GNM documentation for more details.

Step 6: Getting other data from GNM

This step demonstrates how one can obtain other data from GNM.

Code Example:

model.calculate_fluctuations()
print(model.get_fluctuations())

model.calculate_crosscorrelation()
print(model.get_pseudoinverse())

from matplotlib import pyplot as plt
plt.imshow(model.get_crosscorrelation(), cmap='hot')
plt.show()

Calculate Alpha Shape of the Protein

This tutorial is to show how an API user can get the alpha shape of a protein.

Step 1

	Import the submodules:

from packman.molecule import load_structure, download_structure
from packman.geometry import AlphaShape, Circumsphere

Step 2

	Download the PDB file

	Load the PDB file into the ‘mol’ object:

download_structure('1exr')
mol = load_structure('1exr.cif')

Step 3

Get the atoms you wish to calculate the alpha shape from.

Here, we are selecting all the atoms of the protein. However, check the ‘molecule’ tutorials to select various other subgroups such as c-alpha atoms.:

atoms = [i for i in mol[0].get_atoms()]

Step 4

Calculate the alpha shape with infinite cutoff parameter (Delaunay Tessellations)

It is important to note that the alpha shapes are just the subsets of Delaunay tessellations. Users can also calculate the radius of each tessellation in the Delaunay Tessellation by running Step 4.2:

#4.1
Tessellations = AlphaShape(atoms,float('Inf'))

#4.2
Circumsphere(Tessellations[0])

Step 5

We can also calculate the Alpha shape with specific Alpha value as a second positional argument as following:

#Here, Alpha = 3
Tessellations = AlphaShape(atoms, 3)

The output of the AlphaShape will be a 2D array consisting of 1D arrays of the set of 4 atoms as components of the tessellations. ie.. [[atom1 of tessellation_1,…,atom4 of tessellation_1], ….. , [atom1 of tessellation_n,…,atom4 of tessellation_n]]

Rotate specific bonds

This tutorial helps users how to rotate specific bonds using Molecule submodule

Step 1

	Import the submodule:

from packman import molecule

Step 2

	Download the PDB file

	Load the PDB file into the ‘mol’ object:

pdbid = ‘1exr’
molecule.download_structure(pdbid,save_name=pdbid)
mol = molecule.load_structure(pdbid+’.cif’)

Step 3

Get the atoms that define the bond between the atoms. You can also select other atoms in various ways. Please check the molecule object tutorial for more details.

Here, we are selecting atoms with ID 228 and 230. They form a peptide bond between 25th and 26th Amino acid for the given example:

atom1 = mol[0].get_atom(228)
atom2 = mol[0].get_atom(230)

Step 4

Find the common bond between these atoms using Atom.get_bond() function. Please note that you can also iterate over other bonds by using Atom.get_bonds() and also use Atom.get_bond() with atom id.:

common_bond = atom1.get_bond(atom2)
#Another way:
#common_bond = atom1.get_bond(230)

Step 5

We can rotate the bonds by using bond.set_torsion() function. (Use bond.get_torsion() to measure the torsion angle). By default, the function uses radians as units. Define radians=False if you want to specify the angle in degrees.

Start with the following function, and one by one, the program will guide you through the parameter selection (selecting neighbor1 and neighbor2); here, we select 10-degree rotation to select the neighbors.:

common_bond.set_torsion(10,radians=False)
#The following commented code would be suggested by the program in the scenario after selecting parameters one by one.
#common_bond.set_torsion(10,neighbor1=227,radians=False)
#common_bond.set_torsion(10,neighbor1=227,neighbor2 = 231,radians=False)

Here, we rotate the bond selected above 0 to 350 by 10 degrees and save the conformation in a new file.:

for i in range(0,360,10):
 common_bond.set_torsion(i, neighbor1=227, neighbor2 = 231,radians=False)
 mol.write_structure('X'+str(i)+'.cif',ftype='cif')

Check the conformations saved in the present working directory.

[image: ../_images/bond_rotate.png]

Using the concept to Compliance to study Molecular Structures

This tutorial aims to get the user to familiarize with the concept of structural compliance.

How to cite:

Scaramozzino, D, Khade, PM, Jernigan, RL, Lacidogna, G, Carpinteri, A. Structural compliance:
A new metric for protein flexibility. Proteins. 2020; 1– 11. https://doi.org/10.1002/prot.25968

Step 1

	Import the ‘molecule’ submodule from PACKMAN. (If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN)

	Download the structure from PDB and save it with the appropriate extension.

	Load the structure using the submodule:

#Step 1.1
from packman import molecule

#Step 1.2
molecule.download_structure('1LF7')
#OR (Default is CIF format; to change it to PDB)
#molecule.download_structure('1LF7',ftype = 'pdb')

#Step 1.3
mol=molecule.load_structure('1LF7.cif')
#OR
#mol=molecule.load_structure('1LF7.pdb')

Step 2

	Import ‘anm’ submodule from PACKMAN.

	Load the C-Alpha atoms of the molecule from the first model. For further information about the atoms selection and ‘molecule’ object functions, please read the PACKMAN ‘molecule’ tutorials.

	Build the ANM model of the selected atoms. With appropriate power (Please refer to the Publication):

#Step 2.1
from packman import anm

#Step 2.2
c_alpha = mol[0].get_calpha()

#Step 2.3
ANM_MODEL = anm.ANM(c_alpha, pf=True, dr=float('Inf'), power=3)

Step 3

Calculate the Hessian Matrix, Decompose it and Run the stiffness and compliance analysis.:

#Step 3
ANM_MODEL.calculate_hessian()
ANM_MODEL.calculate_decomposition()
ANM_MODEL.calculate_stiffness_compliance()

Step 4

Extract and store the maps and profiles for the visualization.:

stiffness_map = ANM_MODEL.get_stiffness_map()
compliance_map = ANM_MODEL.get_compliance_map()

b_factors = [i.get_bfactor() for i in c_alpha]
fluctuations = ANM_MODEL.get_fluctuations()
stiffness_profile = ANM_MODEL.get_stiffness_profile()
compliance_profile = ANM_MODEL.get_compliance_profile()

Step 5

Import any visualization package such as seaborn and visualize the stiffness profile.:

import seaborn as sns
sns.heatmap(stiffness_map)

[image: ../_images/compliance_stiffness_map.png]

Step 6

Similarly, for the compliance profile:

sns.heatmap(compliance_map)

[image: ../_images/compliance_compliance_map.png]

Step 7

Visualize the profiles and compare them with the experimental B-factors.:

from matplotlib import pyplot as plt
import numpy

plt.plot(b_factors/numpy.linalg.norm(b_factors) ,color= 'blue')
plt.plot(compliance_profile/numpy.linalg.norm(compliance_profile) ,color= 'red')
plt.plot(stiffness_profile/numpy.linalg.norm(stiffness_profile) ,color='green')
plt.show()

[image: ../_images/compliance_pearsonr.png]

Step 8

Calculate the Pearson Correlation Coefficient between any profile and the experimental B-factors.:

from scipy.stats import pearsonr
pearsonr(b_factors,compliance_profile)

(0.7879402882589035, 6.05510642055883e-36)

DCI Analysis CLI

This tutorial familiarises users with the Command-line Interface (CLI) of the DCI Analysis. The same functionality is also available in the PACKMAN API (tutorials_dci_api)

PACKMAN DCI Analysis Web Server:

How to cite:

Paper Under Review.

CLI INSTRUCTIONS

Following is the PACKMAN hinge prediction interface description:

usage: packman dci [-h] [-pdbid PDB_ID] [-chain CHAIN] [-cutoff CUTOFF]
 [-n_com N_COM]
 FILENAME

positional arguments:
FILENAME Path and filename of the PDB file.

optional arguments:
-h, --help show this help message and exit
-pdbid PDB_ID, --pdbid PDB_ID
 If provided, the PBD with this ID will be downloaded
 and saved to FILENAME.
-chain CHAIN, --chain CHAIN
 Enter The Chain ID
-cutoff CUTOFF, --cutoff CUTOFF
 Enter the cutoff for DCI. (Read the Publication for
 more details)
-n_com N_COM, --n_com N_COM
 Enter the number of communities. (Read the Publication
 for more details)

EXAMPLES

	python -m packman dci 1prw.pdb –chain A The options are self-explanatory. This is the example where PDB file is already present.

	python -m packman dci 1prw.pdb Chains are not defined, and therefore DCI is calculated for all the chains.

Entropy Analysis API

This tutorial familiarises users with the Application Programming Interface (API) of the Entropy Analysis. The same functionality is also available in the PACKMAN CLI (Entropy Analysis CLI) and GUI (PACKMAN GUI).

PACKMAN Entropy Analysis Web Server: <link>

How to cite:

Paper Under Review.

There are two ways the entropy can be calculated. The second way is when the user explicitly wants to leave specific atoms/residues out of the entropy calculation. Chain exclusion can be done via the first method as well. Also, the user has access to the extra get, set, and calculate methods of the Entropy objects using the second way.

The First Way (Through packman.molecule Objects)

Step 1

	Import the ‘molecule’ submodule from PACKMAN. (If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN)

	Download the structure from PDB and save it with the appropriate extension.

	Load the structure using the submodule:

#Step 1.1
from packman import molecule

#Step 1.2
molecule.download_structure('1LF7')
#OR (Default is CIF format; to change it to PDB)
#molecule.download_structure('1LF7',ftype = 'pdb')

#Step 1.3
mol=molecule.load_structure('1LF7.cif')
#OR
#mol=molecule.load_structure('1LF7.pdb')

Step 2

Please note that selecting –chain option is used to calculate the entropy with or without the other chains. For example, if a protein has three chains A, B & C, and the user wants to calculate the entropy of chains A & B in the absence of chain C, the user can use –chain A, B parameter-option do so. However, the presence of the chain C is not an issue, but the user wants to calculate the entropy of chain A & B (with C present), –chain option can be ignored, and chain column in the output should be used to select only A & B chains. The use of API is recommended to control these types of situations efficiently that require more control. Also, we recommend reading the publication for more details on the other parameters.

Do any of the following to calculate the Entropy:

#Via a Model (frame) object
mol[0].calculate_entropy('PackingEntropy',chains=None, probe_size=1.4, onspherepoints=30)

#OR

#Via a Chain object
mol[0]['A'].calculate_entropy('PackingEntropy',chains=None, probe_size=1.4, onspherepoints=30)

#OR

#Via a Residue object (Other parameters are not defined to show they are optional)
mol[0].get_residues()[0].calculate_entropy('PackingEntropy')

Step 3

Please note that the get_entropy (This step) is just a retrieval method. The way entropy is calculated defined in Step 2.

Retrieve the calculated entropy in the exactly same way except it will be Residue/Chain/Model (Frame) specific depending on the object it is being retrieved from.:

#For the Entropy of the 0th frame
mol[0].get_entropy('PackingEntropy')

#For the Entropy of the Chain A
mol[0]['A'].get_entropy('PackingEntropy')

#For the Entropy of the First residue in the sequence
mol[0].get_residues()[0].get_entropy('PackingEntropy')

The Second Way (Via ‘Entropy’ Objects)

For the example, we are going to use ‘PackingEntropy’ object. However, other entropies can be calculated in a similar way. The user can use this way to leave out specific atoms/residues and even chains (chains are also possible to leave out in the first way) in the entropy calculation. Also, the user has access to the extra get, set, and calculate methods of the Entropy objects using this way.

Step 1

	Import the ‘molecule’ submodule from PACKMAN. (If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN)

	Download the structure from PDB and save it with the appropriate extension.

	Load the structure using the submodule:

#Step 1.1
from packman import molecule

#Step 1.2
molecule.download_structure('1LF7')
#OR (Default is CIF format; to change it to PDB)
#molecule.download_structure('1LF7',ftype = 'pdb')

#Step 1.3
mol=molecule.load_structure('1LF7.cif')
#OR
#mol=molecule.load_structure('1LF7.pdb')

Step 2

Please note that selecting –chain option is used to calculate the entropy with or without the other chains. For example, if a protein has three chains A, B & C, and the user wants to calculate the entropy of chains A & B in the absence of chain C, the user can use –chain A, B parameter-option do so. However, the presence of the chain C is not an issue, but the user wants to calculate the entropy of chain A & B (with C present), –chain option can be ignored, and chain column in the output should be used to select only A & B chains. The use of API is recommended to control these types of situations efficiently that require more control. Also, we recommend reading the publication for more details on the other parameters.

	Import the ‘PackingEntropy’ (for example)

	Use the ‘PackingEntropy’ object with specific ‘Atoms’ (that user can select or filter based on choice).:

#Step 1
from packman.entropy import PackingEntropy

#Step 2
result = PackingEntropy(mol[0].get_atoms(),chains='A,B',probe_size=1.4,onspherepoints=30)

Step 3

Please note that the get_entropy (This step) is just a retrieval method. The way entropy is calculated defined in Step 2.

The entropy can be retrieved using the same procedure explained in Step 3 of the first way. However, the PackingEntropy also has get, set, and calculate methods that can be used. Please check the packman.entropy.PackingEntropy for more details.

Entropy Analysis CLI

This tutorial familiarises users with the Command-line Interface (CLI) of the Entropy Analysis. The same functionality is also available in the PACKMAN API (Entropy Analysis API) and GUI (PACKMAN GUI).

PACKMAN Entropy Analysis Web Server: * Packing Entropy: https://packing-entropy.bb.iastate.edu/

How to cite:

Paper Under Review.

CLI INSTRUCTIONS

Please note that selecting –chain option is used to calculate the entropy with or without the other chains. For example, if a protein has three chains A, B & C, and the user wants to calculate the entropy of chains A & B in the absence of chain C, the user can use –chain A, B parameter-option do so. However, the presence of the chain C is not an issue, but the user wants to calculate the entropy of chain A & B (with C present), –chain option can be ignored, and chain column in the output should be used to select only A & B chains. The use of API is recommended to control these types of situations efficiently that require more control. Also, we recommend reading the publication for more details on the other parameters.

Following is the PACKMAN hinge prediction interface description:

usage: packman entropy [-h] [-type entropy_type] [-pdbid PDB_ID]
 [--chains Chains to be used for the entropy calculation]
 [--probe_size Size surface probe radius]
 [--onspherepoints Number of points on a sphere]
 FILENAME

positional arguments:
FILENAME Path and filename of the PDB file.

optional arguments:
-h, --help show this help message and exit
-type entropy_type, --type entropy_type
 Provide the Entropy type (Options: 1. PackingEntropy)
-pdbid PDB_ID, --pdbid PDB_ID
 If provided, the PBD with this ID will be downloaded
 and saved to FILENAME.
--chains Chains to be used for the entropy calculation
 Recommended: None. Chain IDs for the Entropy
 calculation (None means all the chains are included;
 single string means only one chain ID; multiple chains
 should be comma separated).
--probe_size Size surface probe radius
 Recommended: 1.4 (radius of a water molecule), Please
 refer to the paper for more details
--onspherepoints Number of points on a sphere
 Recommended: 30. Number of points to be generated
 around each point for the surface (Read the
 Publication for more details)

EXAMPLES

	python.exe -m packman entropy 1prw.pdb -type PackingEntropy –chains A,B The options are self-explanatory. This is the example where PDB file is already present.

	python.exe -m packman entropy 1prw.pdb -type PackingEntropy Chains are not defined, and therefore entropy is calculated for all the chains.

PACKMAN GUI

Along with the CLI and API, many of the PACKMAN features are also available via GUI. To access the GUI, please enter the following command.:

python -m packman gui
#OR
python3 -m packman gui

	Important Notes:

	
	Windows will have .exe extension for Python

	Please check the working directory for the output files of the GUI options.

	For Python3, tkinter might not be installed by default on some systems (mainly Linux). Please use sudo apt-get install python3-tk or the other OS alternative to this.

Using hd-ANM to study the global dynamics of the molecular structures

This tutorial aims to get the user to familiarize with the concept of hdANM API. Please note that the hdANM is also available with GUI, CLI (tutorials_hdnam_api) and the webserver.

PACKMAN hdANM Analysis Web Server: https://hdanm.bb.iastate.edu/

How to cite:

Pranav M. Khade, Domenico Scaramozzino, Ambuj Kumar, Giuseppe Lacidogna, Alberto Carpinteri, Robert L. Jernigan,
hdANM: a new comprehensive dynamics model for protein hinges, Biophysical Journal, 2021,
https://doi.org/10.1016/j.bpj.2021.10.017

Note: If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN

Step 1: Loading Structure

In this section, we load the file containing the molecular structure. To understand in dept about the packman.molecule object, pelase visit Using ‘Molecule’ to load and manupulate molecular structures. (Basics)

Code Example:

from packman import molecule

#File loading
mol=molecule.load_structure('1exr.cif')
#OR
#mol=molecule.load_structure('1exr.pdb')

#If the c-alpha atoms of the ALL the chains need to be studied,
#calpha=[i for i in mol[0].get_calpha() if i is not None]

#If the c-alpha atoms of the specific chain 'A' needs to be studied,
calpha=[i for i in mol[0]['A'].get_calpha() if i is not None]

Step 2: Loading the hdANM Object

The hd-ANM object has one required argument (set of atoms) and several optional arguments that can be changed according to the user’s needs. Please check packman.anm.hd_anm for more details.

Important Note: hdANM also requires the user to provide the .hng file containing the information about which parts of the protein are hinges and which parts are rigid domains. This information can be obtained from the PACKMAN’s hinge prediction algorithm. Please read the following for more details: tutorials_hinge_prediction

Hinge Information file format (.hng) Example:

1exr.pdb_A D1 1:70
1exr.pdb_A H1 71:90
1exr.pdb_A D2 91:148

The first column in the .hng file is Filename_ChainID, the second column is Domain/Hinge ID, and the third column is the residues in the particular domain/hinge. The .hng file is tab-separated. (Tabs separate columns)

Code Example:

from packman.anm import hdANM
Model=hdANM(calpha,dr=15,power=0,hng_file='1exr.pdb.hng')

Step 3: Calculating Hessian Matrix

Unlike the Hessian matrix of the regular ANM, the hd-ANM Hessian matrix has reduced dimensions. Please refer to the publication mentioned at the top of this page for more details.

Along with the difference mentioned above, we allow users to provide amino acid residue specific molecular masses, atom specific atomic masses, or any other type of weights that needs to be assigned to the atoms/residues. To give custom residue-specific values as mass to the method, simply create a standard python dictionary with 20 standard amino acids as keys and assign corresponding values to it (mass_type parameter).

Code Example:

#Unit mass for all the components
#Model.calculate_hessian(mass_type='unit')

#Atomic Weight Assignment
#Model.calculate_hessian(mass_type='atom')

#Residue Molecular Weight Assignment
Model.calculate_hessian(mass_type='residue')

Step 4: Eigenvalue decomposition

The Eigenvalue decomposition is carried out using the hessian matrix and mass matrix to calculate eigenvalues and eigenvectors.

Code Example:

Model.calculate_decomposition()

Eigenvalues and Eigenvectors. can be obtained by:

Model.get_eigenvalues()
Model.get_eigenvectors()

Respectively. Other calculated attributes and properties of the hd-ANM built can be obtained by its ‘get’ methods. Please refer to packman.anm.hd_anm documentation for more details.

Step 5: Eigenvector Motion Extrapolation

The modes obtained from Step 4 can be visualized on the molecular structure by extrapolating them linearly on curvilinearly by adjusting the parameters of packman.anm.hd_anm.calculate_movie(). By default, the program gives curvilinear extrapolation of the Eigenvector motions.

Important Note: 7th Mode is the first non-rigid mode (0 to 6 indices are not excluded)

Code Example:

Model.calculate_movie(6,scale=2,n=10)

OR:

Model.calculate_movie(6,scale=2,n=10,ftype='pdb')

The ‘6.cif’ / ‘6.pdb’ file will be saved on the present working directory containing the motion for the 7th (First Non Rigid) Mode.

Step 6: Getting hdANM output matrices (Hessian Pseudoinverse / Cross-Correlation Matrix)

This step can be done before generating movies as well. In order to get the hdANM output matrices such as Hessian Pseudoinverse / Cross-Correlation Matrix/ Reverse Transformed Eigenvectors. Please read the paper for more details about the theory and importance of these matrices.

Note: Reverse Transformed Eigenvectors has dimension: 3N x 6D+3H (N= Number of atoms, D= Number of domains & H= Number of hinge Atoms)

Code Example:

#Here, 'n_modes' variable is number of first non-rigid modes to get the result matrices

#For the Hessian Pseudoinverse,
Model.get_hessian_pseudoinverse(n_modes)

#For the Correlation Matrix,
Model.get_crosscorrelation_matrix(n_modes=10)

#For the Reverse Transformed Eigenvectors,
Model.get_RT_eigen_vectors()

hdANM CLI

This tutorial familiarises users with the Command-line Interface (CLI) of the hdanm Analysis. The same functionality is also available in the PACKMAN API (tutorials_hdANM:) and GUI (PACKMAN GUI).

PACKMAN hdANM Analysis Web Server: https://hdanm.bb.iastate.edu/

How to cite:

Pranav M. Khade, Domenico Scaramozzino, Ambuj Kumar, Giuseppe Lacidogna, Alberto Carpinteri, Robert L. Jernigan,
hdANM: a new comprehensive dynamics model for protein hinges, Biophysical Journal, 2021,
https://doi.org/10.1016/j.bpj.2021.10.017

CLI INSTRUCTIONS

Please note that selecting –chain option is used to calculate the hdanm with or without the other chains. For example, if a protein has three chains A, B & C, and the user wants to calculate the hdanm of chains A & B in the absence of chain C, the user can use –chain A, B parameter-option do so. However, the presence of the chain C is not an issue, but the user wants to calculate the hdanm of chain A & B (with C present), –chain option can be ignored, and chain column in the output should be used to select only A & B chains. The use of API is recommended to control these types of situations efficiently that require more control. Also, we recommend reading the publication for more details on the other parameters.

Following is the PACKMAN hinge prediction interface description:

usage: packman hdanm [-h] [-pdbid PDB_ID] [--chain CHAIN] [--dr DR]
 [--power POWER] [--mass MASS] [--scale SCALE]
 [--frames FRAMES] [--modes MODES] [--make_tar]
 FILENAME HNG

positional arguments:
FILENAME Path and filename of the PDB file.
HNG Path and filename of the corresponding HNG file.

optional arguments:
-h, --help show this help message and exit
-pdbid PDB_ID, --pdbid PDB_ID
 If provided, the PBD with this ID will be downloaded
 and saved to FILENAME.
--chain CHAIN Enter The Chain ID
--dr DR Distance cutoff for the ANM.
--power POWER Power of the distance in non-parametric ANM.
--mass MASS Mass of the residue; unit or molecular weight
--scale SCALE movie scale
--frames FRAMES number of frames
--modes MODES how many modes
--make_tar package output files into a tar.gz file

Hinge Prediction using Alpha Shape (API)

This tutorial familiarises users with the API of the Hinge Prediction algorithm using Alpha Shapes. The same functionality is also available in the PACKMAN commandline interface (tutorials_hinge_prediction).

How to cite:

Pranav M. Khade, Ambuj Kumar, Robert L. Jernigan, Characterizing and Predicting Protein Hinges for
Mechanistic Insight, Journal of Molecular Biology, Volume 432, Issue 2, 2020, Pages 508-522,
ISSN 0022-2836, https://doi.org/10.1016/j.jmb.2019.11.018.

Note: If PACKMAN is not installed, please follow the link: https://github.com/Pranavkhade/PACKMAN

QUICK ALGORITHM OVERVIEW

[image: ../_images/hinge_prediction_algorithm_method1.jpg]
Please visit the following for the 15 minute video about the algorithm

 Hinge Prediction using Alpha Shape

Hinge Prediction using Alpha Shape

This tutorial familiarises users with the both Command-line Interface (CLI) and Graphical User Interface (GUI) of the Hinge Prediction algorithm using Alpha Shapes. The same functionality is also available in the PACKMAN API (Hinge Prediction using Alpha Shape (API)).

Please note that there are webservers available for majority of publications in this package before running either User Interface (UI). Example:

PACKMAN Hinge Prediction Web Server: https://packman.bb.iastate.edu/

How to cite:

Pranav M. Khade, Ambuj Kumar, Robert L. Jernigan, Characterizing and Predicting Protein Hinges for
Mechanistic Insight, Journal of Molecular Biology, Volume 432, Issue 2, 2020, Pages 508-522,
ISSN 0022-2836, https://doi.org/10.1016/j.jmb.2019.11.018.

QUICK ALGORITHM OVERVIEW

[image: ../_images/hinge_prediction_algorithm_method1.jpg]
Please visit the following for the 15 minute video about the algorithm.

 Installing PACKMAN

Installing PACKMAN

PREREQUISITES

	numpy (http://www.numpy.org/)

	scipy (https://www.scipy.org/)

	networkx (https://networkx.github.io/)

	mlxtend (http://rasbt.github.io/mlxtend/)

	sklearn (https://scikit-learn.org/stable/)

INSTALLATION

	Installing with pip (Recommended):

pip install py-packman
#OR
#python -m pip install py-packman

	Installing from source:

git clone https://github.com/Pranavkhade/PACKMAN
cd PACKMAN
python setup.py install

 Tutorials

Tutorials

Installation

	Installing PACKMAN

Graphical User Interface (GUI)

	PACKMAN GUI

Command Line Interface (CLI)

	Hinge Prediction using Alpha Shape

	hdANM CLI

	Entropy Analysis CLI

	DCI Analysis CLI

Application Programming Interface (API)

	Using ‘Molecule’ to load and manupulate molecular structures. (Basics)

	Hinge Prediction using Alpha Shape (API)

	Using the concept to Compliance to study Molecular Structures

	Using hd-ANM to study the global dynamics of the molecular structures

	Entropy Analysis API

	Using Gaussian Network Model (GNM)

Utilities (API)

	Rotate specific bonds

	Calculate Alpha Shape of the Protein

 Using ‘Molecule’ to load and manupulate molecular structures. (Basics)

Using ‘Molecule’ to load and manupulate molecular structures. (Basics)

This module is base for all the algorithms and programs written in the PACKMAN. This tutorial aims to give an idea about the information flow and hierarchy in the objects. Once the object’s basic understanding is developed, all the objects’ advanced special features can be explored on their object documentation page.

	Citation:

	Pranav M Khade, Robert L Jernigan, PACKMAN-Molecule: Python Toolbox for Structural Bioinformatics, Bioinformatics Advances, 2022;, vbac007, https://doi.org/10.1093/bioadv/vbac007

[image: ../_images/molecule_graph.png]
Figure 1. The object hierarchy of the packman.molecule submodule. (Figure taken from the paper cited at the top)

Downloading & Loading

Example to download a file from PDB:

from packman import molecule
molecule.download_structure('1prw')
#OR (Default is CIF format; to change it to PDB)
#molecule.download_structure('1prw',ftype = 'pdb')

Example to load a downloaded file into a ‘Protein’ object (Fig 1):

Protein = molecule.load_structure('1prw.cif')
#OR
#Protein = molecule.load_structure('1prw.pdb')

Get Methods

Protein structure stores all the information there is about the protein. To acce